PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2205.
Published online 2008 October 25. doi:  10.1107/S160053680803451X
PMCID: PMC2959499

2-[(4-Chloro­benz­yl)carbonyl­meth­yl]benzoic acid

Abstract

The title compound, C16H13ClO3, is an important inter­mediate in the conversion of isocoumarin to 3,4-dihydro­isocoumarin. The two aromatic rings are oriented at a dihedral angle of 67.18 (3)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers. There is also a C—H(...)π contact between the benzoic acid and 4-chloro­benzyl rings.

Related literature

For a related structure, see: Abid et al. (2006 [triangle]). For general background, see: Barry (1964 [triangle]); Powers et al. (2002 [triangle]); Rossi et al. (2003 [triangle]); Sturtz et al. (2002 [triangle]); Thomas & Jens (1999 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2205-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO3
  • M r = 288.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2205-efi1.jpg
  • a = 5.5000 (4) Å
  • b = 13.2720 (6) Å
  • c = 18.8120 (7) Å
  • β = 94.371 (4)°
  • V = 1369.21 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 150 (1) K
  • 0.29 × 0.19 × 0.16 mm

Data collection

  • Bruker–Nonius Kappa CCD area-detector diffractometer
  • Absorption correction: integration (Coppens, 1970 [triangle]) T min = 0.936, T max = 0.962
  • 10076 measured reflections
  • 3010 independent reflections
  • 2284 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.118
  • S = 1.14
  • 3010 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803451X/hk2557sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803451X/hk2557Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (project No. VZ0021627501) and Higher Education Commission, Islam­a­bad, Pakistan.

supplementary crystallographic information

Comment

The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory activity (Powers et al., 2002). Naturally occurring haloisocoumarins and their halogeno-3,4-dihydroisocoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an intermediate during the conversion of isocoumarin to 3,4-dihydroisocoumarin, has been synthesized, and we report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and comparable with the corresponding values in 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C2-C7) and B (C11-C16) are, of course, planar and the dihedral angle between them is A/B = 67.18 (3)°. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of nonplanar five- and six-membered rings C (O2/C1/C2/C7/H7) and D (O1/C1-C3/C8/H8B). Ring C adopts envelope conformation with C1 atom displaced by -0.108 (3) Å from the plane of the other ring atoms, while ring D has twisted conformation.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist a C—H···π contact (Table 1) between the benzoic acid and 4-chlorobenzyl rings.

Experimental

A solution of 3-(4-chlorobenzyl)isocoumarin (2.0 g, 7 mmol) in ethanol (50 ml) and potassium hydroxide (100 ml, 5%) were refluxed for 4 h. Ethanol was removed from the reaction mixture by distillation. Ice cold water (20 ml) was added and the reaction mixture was acidified with hydrochloric acid. It was extracted with dichloromethane (3 × 20 ml), and then dried and evaporated to yield the crude solid, which was recrystallized from methanol (yield; 85%; m.p. 414-415 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The formation of the title compound.

Crystal data

C16H13ClO3F(000) = 600
Mr = 288.71Dx = 1.401 Mg m3
Monoclinic, P21/cMelting point: 414(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.5000 (4) ÅCell parameters from 10141 reflections
b = 13.2720 (6) Åθ = 1–27.5°
c = 18.8120 (7) ŵ = 0.28 mm1
β = 94.371 (4)°T = 150 K
V = 1369.21 (13) Å3Block, colorless
Z = 40.29 × 0.19 × 0.16 mm

Data collection

Bruker–Nonius Kappa CCD area-detector diffractometer3010 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
graphiteRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.9°
[var phi] and ω scansh = −6→7
Absorption correction: integration (Coppens, 1970)k = −17→15
Tmin = 0.936, Tmax = 0.962l = −21→24
10076 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9198P] where P = (Fo2 + 2Fc2)/3
3010 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.56140 (14)0.35295 (5)0.41926 (4)0.0597 (2)
O10.1626 (3)−0.05908 (11)0.44337 (9)0.0445 (4)
O2−0.1720 (3)−0.11437 (12)0.48932 (9)0.0446 (4)
H2−0.1636−0.05930.50910.054*
O30.0425 (3)−0.11324 (13)0.27714 (9)0.0487 (4)
C10.0174 (4)−0.12684 (15)0.45249 (11)0.0312 (4)
C20.0445 (4)−0.23057 (15)0.42498 (10)0.0313 (4)
C30.2232 (4)−0.25579 (16)0.37852 (11)0.0338 (5)
C40.2425 (5)−0.35656 (18)0.35955 (13)0.0470 (6)
H40.3604−0.37530.32920.056*
C50.0930 (5)−0.42938 (18)0.38464 (15)0.0547 (7)
H50.1120−0.49630.37140.066*
C6−0.0840 (5)−0.40396 (18)0.42911 (14)0.0512 (6)
H6−0.1869−0.45290.44560.061*
C7−0.1076 (4)−0.30469 (17)0.44895 (12)0.0410 (5)
H7−0.2273−0.28690.47900.049*
C80.3863 (4)−0.18048 (17)0.34637 (12)0.0378 (5)
H8A0.5133−0.21650.32380.045*
H8B0.4648−0.14020.38450.045*
C90.2595 (4)−0.11086 (16)0.29233 (11)0.0354 (5)
C100.4211 (4)−0.03623 (19)0.25726 (13)0.0458 (6)
H10A0.5798−0.06650.25280.055*
H10B0.3504−0.02110.20960.055*
C110.4526 (4)0.06038 (17)0.29935 (11)0.0363 (5)
C120.6641 (4)0.07862 (19)0.34231 (13)0.0437 (6)
H120.78550.02970.34640.052*
C130.6968 (4)0.16829 (19)0.37871 (13)0.0459 (6)
H130.83960.18000.40720.055*
C140.5170 (4)0.23985 (16)0.37280 (11)0.0391 (5)
C150.3062 (4)0.22462 (18)0.33044 (13)0.0432 (5)
H150.18600.27400.32620.052*
C160.2761 (4)0.13451 (18)0.29391 (13)0.0430 (5)
H160.13340.12350.26520.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0813 (5)0.0436 (4)0.0545 (4)−0.0193 (3)0.0070 (3)−0.0008 (3)
O10.0533 (10)0.0334 (8)0.0491 (10)−0.0093 (7)0.0181 (8)−0.0123 (7)
O20.0431 (9)0.0377 (9)0.0549 (10)−0.0034 (7)0.0157 (8)−0.0169 (7)
O30.0400 (9)0.0498 (10)0.0547 (10)0.0010 (8)−0.0064 (7)0.0059 (8)
C10.0330 (11)0.0308 (10)0.0297 (10)0.0027 (9)0.0012 (8)−0.0025 (8)
C20.0362 (11)0.0269 (10)0.0300 (10)0.0030 (9)−0.0028 (8)−0.0027 (8)
C30.0365 (11)0.0342 (11)0.0297 (10)0.0071 (9)−0.0045 (8)−0.0057 (9)
C40.0560 (15)0.0397 (13)0.0446 (13)0.0147 (11)−0.0015 (11)−0.0126 (11)
C50.0716 (18)0.0266 (11)0.0633 (17)0.0077 (12)−0.0123 (14)−0.0102 (11)
C60.0652 (17)0.0299 (12)0.0567 (16)−0.0076 (12)−0.0075 (13)0.0017 (11)
C70.0470 (13)0.0343 (12)0.0409 (12)−0.0043 (10)−0.0009 (10)−0.0001 (9)
C80.0331 (11)0.0430 (12)0.0375 (11)0.0079 (10)0.0042 (9)−0.0073 (10)
C90.0386 (12)0.0345 (11)0.0334 (11)0.0041 (9)0.0046 (9)−0.0085 (9)
C100.0484 (14)0.0492 (14)0.0414 (13)0.0000 (11)0.0139 (10)−0.0019 (11)
C110.0353 (11)0.0410 (12)0.0337 (11)−0.0017 (9)0.0096 (9)0.0053 (9)
C120.0346 (12)0.0512 (14)0.0449 (13)0.0089 (10)0.0005 (10)0.0104 (11)
C130.0394 (13)0.0566 (15)0.0404 (12)−0.0076 (11)−0.0067 (10)0.0060 (11)
C140.0453 (13)0.0351 (11)0.0371 (12)−0.0104 (10)0.0052 (10)0.0075 (9)
C150.0388 (12)0.0393 (12)0.0515 (14)0.0029 (10)0.0025 (10)0.0069 (11)
C160.0324 (11)0.0496 (14)0.0463 (13)−0.0025 (10)−0.0024 (9)0.0028 (11)

Geometric parameters (Å, °)

Cl1—C141.745 (2)C8—C91.505 (3)
O2—H20.8200C8—H8A0.9700
O3—C91.207 (3)C8—H8B0.9700
C1—O11.223 (2)C9—C101.515 (3)
C1—O21.305 (2)C10—H10A0.9700
C1—C21.482 (3)C10—H10B0.9701
C3—C41.390 (3)C11—C101.510 (3)
C3—C21.404 (3)C11—C121.386 (3)
C4—H40.9300C11—C161.381 (3)
C5—C41.376 (4)C12—H120.9300
C5—C61.373 (4)C13—C121.378 (4)
C5—H50.9300C13—C141.369 (3)
C6—H60.9299C13—H130.9300
C7—C21.389 (3)C15—C141.371 (3)
C7—C61.378 (3)C15—C161.383 (3)
C7—H70.9299C15—H150.9299
C8—C31.501 (3)C16—H160.9299
C1—O2—H2109.6O3—C9—C8122.9 (2)
O1—C1—O2122.49 (19)O3—C9—C10121.1 (2)
O1—C1—C2123.35 (18)C8—C9—C10116.01 (19)
O2—C1—C2114.13 (18)C11—C10—C9111.99 (18)
C7—C2—C3120.05 (19)C11—C10—H10A109.2
C7—C2—C1117.74 (19)C9—C10—H10A109.2
C3—C2—C1122.16 (18)C11—C10—H10B109.3
C4—C3—C2117.4 (2)C9—C10—H10B109.3
C4—C3—C8118.5 (2)H10A—C10—H10B107.9
C2—C3—C8124.08 (18)C16—C11—C12118.2 (2)
C5—C4—C3121.9 (2)C16—C11—C10120.9 (2)
C5—C4—H4119.1C12—C11—C10120.8 (2)
C3—C4—H4119.1C13—C12—C11120.8 (2)
C6—C5—C4120.4 (2)C13—C12—H12119.7
C6—C5—H5119.8C11—C12—H12119.5
C4—C5—H5119.7C14—C13—C12119.5 (2)
C5—C6—C7119.1 (2)C14—C13—H13120.2
C5—C6—H6120.6C12—C13—H13120.2
C7—C6—H6120.3C13—C14—C15121.2 (2)
C6—C7—C2121.2 (2)C13—C14—Cl1118.91 (18)
C6—C7—H7119.5C15—C14—Cl1119.86 (18)
C2—C7—H7119.3C14—C15—C16118.7 (2)
C3—C8—C9114.86 (18)C14—C15—H15120.7
C3—C8—H8A108.7C16—C15—H15120.6
C9—C8—H8A108.6C11—C16—C15121.5 (2)
C3—C8—H8B108.4C11—C16—H16119.3
C9—C8—H8B108.6C15—C16—H16119.2
H8A—C8—H8B107.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.812.626 (3)176
C7—H7···O20.932.322.669 (3)102
C8—H8B···O10.972.332.790 (3)108
C16—H16···Cg1ii0.933.354.079 (3)137

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2557).

References

  • Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Barry, R. D. (1964). Chem. Rev.64, 239–241.
  • Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev.102, 4639–4643. [PubMed]
  • Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem.50, 6979–6984.
  • Thomas, L. & Jens, B. (1999). J. Nat. Prod.62, 1182–1187.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography