PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2215.
Published online 2008 October 31. doi:  10.1107/S160053680803465X
PMCID: PMC2959495

Dimethyl 2-nitro­terephthalate

Abstract

In the mol­ecule of the title compound, C10H9NO6, the two ester groups and the nitro group are inclined at 9.2 (2), 123.3 (6) and 135.2 (5)°, respectively to the mean plane of the benzene ring. In the crystal structure, mol­ecules are stacked along the a axis, without any π–π inter­actions. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H(...)O.

Related literature

For the use of the title compound in the preparation of 2-amino-dimethyl-terephthalic acid, an inter­mediate for dyes, see: Niu et al. (2002 [triangle]). For related structures, see: Brisse & Pérez (1976 [triangle]); Huang & Liang (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2215-scheme1.jpg

Experimental

Crystal data

  • C10H9NO6
  • M r = 239.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2215-efi1.jpg
  • a = 6.9080 (14) Å
  • b = 12.662 (3) Å
  • c = 12.231 (2) Å
  • β = 98.18 (3)°
  • V = 1058.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 293 (2) K
  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989 [triangle]) T min = 0.963, T max = 0.987
  • 2052 measured reflections
  • 1889 independent reflections
  • 1245 reflections with I > 2σ(I)
  • R int = 0.057
  • 3 standard reflections every 200 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.201
  • S = 1.00
  • 1889 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803465X/pv2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803465X/pv2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

The title compound, (I), is useful as a raw material for the preparation of 2-amino-dimethyl-terephthalic acid, which is used as an important intermediate for dyes (Niu et al., 2002). The structures of dimethyl terephthalate (Brisse & Pérez, 1976) and dimethyl 2,3-dihydroxyterephthalate (Huang & Liang, 2007) which are closely related to the title compound have already been reported. In this article, we report the crystal structure of (I). A view of the molecule of (I) is presented in Fig. 1. The bond lengths and angles are within expected ranges. The C1/O1/C2/O2, C10/O6/C9/O5 and O3/N/O4 planes form dihedral angles of 9.2 (2), 123.3 (6) and 135.2 (5)°, respectively, with the C3—C8 plane. In the crystal structure, the molecules are stacked along the a axis, without any π-π interactions. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O (Table 1).

Experimental

A sample of commercial 2-nitro-dimethyl-terephthalic acid (Aldrich) was crystalized by slow evaporation of a solution in methanol.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with HC(aryl) = 0.93 Å and Uiso(H) = 1.2Ueq(C) or with HC(methyl) = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
A view of the molecule of (I) with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C10H9NO6F(000) = 496
Mr = 239.18Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.9080 (14) Åθ = 10–13°
b = 12.662 (3) ŵ = 0.13 mm1
c = 12.231 (2) ÅT = 293 K
β = 98.18 (3)°Block, colourless
V = 1058.9 (4) Å30.30 × 0.30 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
graphiteθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = −8→8
Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius,1989)k = 0→15
Tmin = 0.963, Tmax = 0.987l = 0→14
2052 measured reflections3 standard reflections every 200 reflections
1889 independent reflections intensity decay: 2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.201w = 1/[σ2(Fo2) + (0.05P)2 + 3.5P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1889 reflectionsΔρmax = 0.29 e Å3
156 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O60.0321 (5)0.4552 (3)0.8800 (3)0.0576 (9)
O20.7697 (5)0.0539 (2)1.0189 (3)0.0634 (10)
O10.8957 (5)0.2101 (3)1.0787 (3)0.0584 (9)
O50.0234 (5)0.3733 (3)0.7173 (3)0.0633 (10)
O40.1497 (6)0.0806 (3)0.7385 (3)0.0755 (12)
N0.1105 (6)0.1519 (3)0.8006 (3)0.0545 (11)
C30.5871 (6)0.2093 (3)0.9698 (3)0.0397 (10)
O3−0.0550 (5)0.1733 (3)0.8156 (4)0.0806 (13)
C20.7594 (7)0.1483 (3)1.0248 (4)0.0445 (11)
C80.5802 (7)0.3193 (3)0.9806 (4)0.0489 (11)
H8A0.68380.35611.02010.059*
C60.2593 (6)0.3208 (3)0.8712 (3)0.0412 (10)
C70.4154 (7)0.3717 (3)0.9309 (4)0.0516 (12)
H7A0.40980.44470.93820.062*
C90.0911 (7)0.3822 (3)0.8120 (4)0.0470 (11)
C10−0.1157 (8)0.5271 (4)0.8335 (5)0.0629 (14)
H10A−0.13050.58190.88590.094*
H10B−0.23730.49010.81550.094*
H10C−0.07900.55790.76770.094*
C50.2728 (6)0.2107 (3)0.8613 (3)0.0386 (10)
C40.4337 (7)0.1556 (3)0.9090 (4)0.0465 (11)
H4A0.43980.08270.90060.056*
C11.0681 (8)0.1571 (5)1.1324 (5)0.0769 (17)
H1A1.16620.20861.15830.115*
H1B1.11740.11061.08080.115*
H1C1.03570.11701.19390.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O60.073 (2)0.0433 (18)0.060 (2)0.0163 (17)0.0214 (17)−0.0090 (16)
O20.075 (2)0.0335 (18)0.087 (3)0.0090 (17)0.0289 (19)0.0070 (17)
O10.062 (2)0.0383 (18)0.076 (2)0.0080 (16)0.0165 (18)0.0019 (17)
O50.065 (2)0.075 (3)0.049 (2)0.0151 (19)0.0045 (17)−0.0057 (18)
O40.099 (3)0.048 (2)0.081 (3)−0.005 (2)0.017 (2)−0.028 (2)
N0.063 (3)0.042 (2)0.061 (3)−0.017 (2)0.019 (2)−0.001 (2)
C30.051 (3)0.029 (2)0.044 (2)0.0019 (19)0.0248 (19)0.0009 (18)
O30.052 (2)0.083 (3)0.113 (3)−0.017 (2)0.036 (2)−0.010 (3)
C20.054 (3)0.032 (2)0.053 (3)0.001 (2)0.025 (2)0.004 (2)
C80.064 (3)0.027 (2)0.058 (3)−0.002 (2)0.015 (2)−0.005 (2)
C60.053 (3)0.029 (2)0.045 (2)0.0025 (19)0.020 (2)−0.0016 (19)
C70.071 (3)0.023 (2)0.061 (3)0.006 (2)0.010 (2)−0.004 (2)
C90.059 (3)0.036 (2)0.052 (3)−0.002 (2)0.025 (2)−0.002 (2)
C100.068 (3)0.052 (3)0.071 (3)0.018 (3)0.021 (3)0.002 (3)
C50.048 (2)0.030 (2)0.043 (2)0.0010 (19)0.0230 (19)−0.0007 (18)
C40.059 (3)0.023 (2)0.065 (3)−0.007 (2)0.035 (2)−0.005 (2)
C10.076 (4)0.059 (4)0.099 (5)0.016 (3)0.026 (3)0.006 (3)

Geometric parameters (Å, °)

O6—C91.345 (5)C8—H8A0.9300
O6—C101.425 (6)C6—C71.373 (6)
O2—C21.200 (5)C6—C51.404 (6)
O1—C21.325 (5)C6—C91.497 (6)
O1—C11.442 (6)C7—H7A0.9300
O5—C91.191 (5)C10—H10A0.9600
O4—N1.234 (5)C10—H10B0.9600
N—O31.214 (5)C10—H10C0.9600
N—C51.458 (6)C5—C41.371 (6)
C3—C41.383 (6)C4—H4A0.9300
C3—C81.401 (6)C1—H1A0.9600
C3—C21.496 (6)C1—H1B0.9600
C8—C71.381 (6)C1—H1C0.9600
C9—O6—C10117.2 (4)O5—C9—C6126.3 (4)
C2—O1—C1115.7 (4)O6—C9—C6109.9 (4)
O3—N—O4123.5 (4)O6—C10—H10A109.5
O3—N—C5118.7 (4)O6—C10—H10B109.5
O4—N—C5117.8 (4)H10A—C10—H10B109.5
C4—C3—C8120.4 (4)O6—C10—H10C109.5
C4—C3—C2119.2 (4)H10A—C10—H10C109.5
C8—C3—C2120.5 (4)H10B—C10—H10C109.5
O2—C2—O1125.0 (4)C4—C5—C6121.9 (4)
O2—C2—C3122.5 (4)C4—C5—N118.4 (4)
O1—C2—C3112.5 (4)C6—C5—N119.7 (4)
C7—C8—C3118.3 (4)C5—C4—C3119.4 (4)
C7—C8—H8A120.9C5—C4—H4A120.3
C3—C8—H8A120.9C3—C4—H4A120.3
C7—C6—C5117.1 (4)O1—C1—H1A109.5
C7—C6—C9120.7 (4)O1—C1—H1B109.5
C5—C6—C9122.0 (4)H1A—C1—H1B109.5
C6—C7—C8123.0 (4)O1—C1—H1C109.5
C6—C7—H7A118.5H1A—C1—H1C109.5
C8—C7—H7A118.5H1B—C1—H1C109.5
O5—C9—O6123.7 (5)
C1—O1—C2—O20.6 (7)C7—C6—C9—O6−48.0 (5)
C1—O1—C2—C3−179.0 (4)C5—C6—C9—O6137.2 (4)
C4—C3—C2—O2−0.5 (6)C7—C6—C5—C40.1 (6)
C8—C3—C2—O2178.9 (4)C9—C6—C5—C4175.1 (4)
C4—C3—C2—O1179.1 (4)C7—C6—C5—N179.0 (4)
C8—C3—C2—O1−1.4 (6)C9—C6—C5—N−6.1 (6)
C4—C3—C8—C71.3 (7)O3—N—C5—C4135.0 (5)
C2—C3—C8—C7−178.2 (4)O4—N—C5—C4−43.2 (6)
C5—C6—C7—C8−0.3 (7)O3—N—C5—C6−43.9 (6)
C9—C6—C7—C8−175.3 (4)O4—N—C5—C6138.0 (4)
C3—C8—C7—C6−0.4 (7)C6—C5—C4—C30.7 (6)
C10—O6—C9—O5−1.9 (7)N—C5—C4—C3−178.1 (4)
C10—O6—C9—C6174.5 (4)C8—C3—C4—C5−1.5 (6)
C7—C6—C9—O5128.2 (5)C2—C3—C4—C5178.0 (4)
C5—C6—C9—O5−46.5 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.962.593.523 (7)164
C4—H4A···O2ii0.932.543.185 (5)127

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2115).

References

  • Brisse, F. & Pérez, S. (1976). Acta Cryst. B32, 2110–2115.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Huang, J.-Y. & Liang, H.-Z. (2007). Acta Cryst. E63, o3019–o3020.
  • Niu, T. S., Niu, X. Y., Yang, G. S. & Hou, J. Q. (2002). Appl. Chem. Ind.34, 176–177.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography