PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1259.
Published online 2008 September 13. doi:  10.1107/S1600536808028791
PMCID: PMC2959485

(4,4′-Dimethyl-2,2′-bipyridine-κ2 N,N′)diiodidomercury(II)

Abstract

In the mol­ecule of the title compound, [HgI2(C12H12N2)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the 4,4′-dimethyl-2,2′-bipyridine ligand and by two I atoms. There is a π–π contact between the pyridine rings [centroid–centroid distance = 3.775 (6) Å].

Related literature

For related literature, see: Khalighi et al. (2008 [triangle]); Ahmadi et al. (2008 [triangle]); Khavasi et al. (2008 [triangle]); Freire et al. (1999 [triangle]); Chen et al. (2006 [triangle]); Htoon & Ladd (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1259-scheme1.jpg

Experimental

Crystal data

  • [HgI2(C12H12N2)]
  • M r = 638.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1259-efi1.jpg
  • a = 8.4214 (9) Å
  • b = 9.8391 (10) Å
  • c = 10.2983 (10) Å
  • α = 69.383 (8)°
  • β = 88.448 (8)°
  • γ = 74.670 (8)°
  • V = 768.18 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 14.02 mm−1
  • T = 298 (2) K
  • 0.38 × 0.25 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.022, T max = 0.183
  • 8874 measured reflections
  • 4123 independent reflections
  • 3467 reflections with I > 2σ(I)
  • R int = 0.091

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.159
  • S = 0.95
  • 4123 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 1.95 e Å−3
  • Δρmin = −1.38 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028791/hk2525sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028791/hk2525Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Recently, we reported the syntheses and crystal structures of [Zn(5,5'-dmbpy)Cl2], (II), (Khalighi et al., 2008), [Cd(5,5'-dmbpy)(µ-Cl)2]n, (III), (Ahmadi et al., 2008) and {[HgCl(dm4bt)]2(µ-Cl)2}, (IV), (Khavasi et al., 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and dm4bt is 2,2'-dimethyl-4,4' -bithiazole]. There are several HgII complexes, with formula, [HgI2(N-N)], such as [HgI2(bipy)], (V), [HgI2(phen)], (VI), [HgI2(2,9-dmphen)], (VII), (Freire et al., 1999), [HgI2(bipy)][HgI2], (VIII), (Chen et al., 2006) and [HgI2(TMDA)], (IX), (Htoon & Ladd, 1976) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline and TMDA is tetramethylethylenediamine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (I), (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 4,4'-dimethyl-2,2'-bipyridine and two I atoms. The Hg—I and Hg—N bond lengths and angles (Table 1) are within normal ranges, as in (V) and (VI).

In the crystal structure, the π–π contact (Fig. 2) between the pyridine rings, Cg2···Cg3i [symmetry code: (i) 1 - x, -y, -z, where Cg2 and Cg3 are the centroids of the rings (N1/C1–C3/C5/C6) and (N2/C7–C9/C11/C12), respectively] may stabilize the structure, with centroid–centroid distance of 3.775 (6) Å.

Experimental

For the preparation of the title compound, (I), a solution of 4,4'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (20 ml) was added to a solution of HgI2 (0.61 g, 1.33 mmol) in acetonitrile (50 ml) and the resulting colorless solution was stirred for 20 min at room temperature, and then it was left to evaporate slowly. After one week, colorless block crystals of (I) were isolated (yield; 0.61 g, 71.8%).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A packing diagram of the title compound.

Crystal data

[HgI2(C12H12N2)]Z = 2
Mr = 638.63F(000) = 568
Triclinic, P1Dx = 2.761 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4214 (9) ÅCell parameters from 2145 reflections
b = 9.8391 (10) Åθ = 2.1–29.2°
c = 10.2983 (10) ŵ = 14.02 mm1
α = 69.383 (8)°T = 298 K
β = 88.448 (8)°Block, colourless
γ = 74.670 (8)°0.38 × 0.25 × 0.12 mm
V = 768.18 (14) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4123 independent reflections
Radiation source: fine-focus sealed tube3467 reflections with I > 2σ(I)
graphiteRint = 0.091
[var phi] and ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −11→11
Tmin = 0.022, Tmax = 0.183k = −13→13
8874 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.159w = 1/[σ2(Fo2) + (0.108P)2 + 1.3499P] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.002
4123 reflectionsΔρmax = 1.95 e Å3
155 parametersΔρmin = −1.38 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.31760 (5)0.15247 (5)0.30109 (4)0.05970 (19)
I10.03155 (9)0.31134 (10)0.35551 (9)0.0704 (2)
I20.63357 (8)0.13618 (9)0.35681 (7)0.0594 (2)
N10.3481 (10)0.2223 (10)0.0514 (8)0.0520 (16)
N20.2438 (12)−0.0160 (12)0.2073 (9)0.0595 (19)
C10.3943 (12)0.3461 (12)−0.0232 (12)0.058 (2)
H10.42090.40420.02270.069*
C20.4037 (14)0.3905 (12)−0.1657 (13)0.064 (3)
H20.43740.4763−0.21410.077*
C30.3630 (12)0.3066 (10)−0.2355 (10)0.053 (2)
C40.368 (2)0.3537 (19)−0.3901 (13)0.080 (4)
H4A0.26070.3701−0.43130.096*
H4B0.44600.2758−0.41270.096*
H4C0.40150.4454−0.42560.096*
C50.3166 (12)0.1780 (10)−0.1574 (9)0.0512 (18)
H50.29010.1178−0.20090.061*
C60.3098 (10)0.1393 (10)−0.0149 (9)0.0461 (16)
C70.2537 (10)0.0050 (9)0.0721 (9)0.0438 (15)
C80.2150 (11)−0.0932 (10)0.0177 (10)0.0488 (17)
H80.2260−0.0777−0.07620.059*
C90.1602 (11)−0.2137 (10)0.1003 (11)0.0525 (19)
C100.1200 (14)−0.3201 (12)0.0393 (13)0.065 (2)
H10A0.2170−0.36700.00340.079*
H10B0.0348−0.2648−0.03460.079*
H10C0.0825−0.39620.11030.079*
C110.1411 (15)−0.2305 (14)0.2394 (12)0.065 (3)
H110.1004−0.30780.29810.078*
C120.1831 (16)−0.1319 (15)0.2875 (11)0.066 (3)
H120.1698−0.14380.38050.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0532 (2)0.0783 (3)0.0614 (3)−0.02592 (18)0.01400 (15)−0.0362 (2)
I10.0537 (4)0.0824 (5)0.0729 (4)−0.0159 (3)0.0167 (3)−0.0280 (4)
I20.0539 (3)0.0771 (4)0.0543 (3)−0.0294 (3)0.0096 (2)−0.0241 (3)
N10.056 (4)0.058 (4)0.049 (3)−0.022 (3)0.010 (3)−0.022 (3)
N20.063 (5)0.077 (5)0.047 (4)−0.029 (4)0.011 (3)−0.026 (4)
C10.054 (5)0.052 (5)0.074 (6)−0.023 (4)0.005 (4)−0.025 (4)
C20.061 (5)0.047 (5)0.079 (7)−0.021 (4)0.010 (5)−0.013 (4)
C30.054 (5)0.044 (4)0.056 (5)−0.013 (3)0.006 (4)−0.012 (3)
C40.089 (9)0.089 (9)0.056 (5)−0.033 (7)0.013 (5)−0.013 (6)
C50.057 (5)0.048 (4)0.048 (4)−0.015 (4)0.009 (3)−0.016 (3)
C60.041 (4)0.044 (4)0.052 (4)−0.011 (3)0.013 (3)−0.017 (3)
C70.039 (3)0.042 (3)0.048 (4)−0.010 (3)0.008 (3)−0.016 (3)
C80.047 (4)0.048 (4)0.053 (4)−0.014 (3)0.012 (3)−0.020 (3)
C90.043 (4)0.048 (4)0.061 (5)−0.012 (3)0.004 (3)−0.014 (3)
C100.067 (5)0.049 (5)0.078 (6)−0.014 (4)0.010 (5)−0.021 (4)
C110.071 (6)0.070 (6)0.060 (5)−0.040 (5)0.007 (5)−0.013 (5)
C120.075 (7)0.079 (7)0.050 (4)−0.040 (5)0.015 (4)−0.017 (4)

Geometric parameters (Å, °)

Hg1—I12.6671 (9)C6—N11.334 (12)
Hg1—I22.6885 (8)C6—C71.498 (12)
N1—Hg12.442 (8)C7—N21.337 (12)
N2—Hg12.402 (10)C7—C81.383 (13)
C1—N11.342 (13)C8—C91.378 (13)
C1—C21.382 (17)C8—H80.9300
C1—H10.9300C9—C111.392 (16)
C2—C31.377 (17)C9—C101.506 (16)
C2—H20.9300C10—H10A0.9600
C3—C51.389 (13)C10—H10B0.9600
C3—C41.497 (16)C10—H10C0.9600
C4—H4A0.9600C11—C121.357 (18)
C4—H4B0.9600C11—H110.9300
C4—H4C0.9600C12—N21.366 (15)
C5—C61.384 (12)C12—H120.9300
C5—H50.9300
I1—Hg1—I2132.56 (3)C6—C5—C3120.2 (9)
N1—Hg1—I1111.9 (2)C6—C5—H5119.7
N1—Hg1—I292.87 (19)C3—C5—H5120.2
N2—Hg1—N167.3 (3)N1—C6—C5121.6 (8)
N2—Hg1—I1104.9 (2)N1—C6—C7116.6 (8)
N2—Hg1—I2122.2 (2)C5—C6—C7121.7 (8)
C1—N1—Hg1122.2 (7)N2—C7—C8121.2 (8)
C6—N1—Hg1119.2 (6)N2—C7—C6116.1 (8)
C6—N1—C1118.6 (8)C8—C7—C6122.6 (8)
C7—N2—Hg1120.8 (7)C9—C8—C7121.0 (9)
C7—N2—C12117.4 (9)C9—C8—H8119.4
C12—N2—Hg1121.7 (7)C7—C8—H8119.6
N1—C1—C2122.5 (10)C8—C9—C11117.7 (10)
N1—C1—H1118.7C8—C9—C10120.2 (10)
C2—C1—H1118.8C11—C9—C10122.1 (9)
C3—C2—C1119.5 (10)C9—C10—H10A109.2
C3—C2—H2120.1C9—C10—H10B109.6
C1—C2—H2120.4H10A—C10—H10B109.5
C2—C3—C5117.6 (10)C9—C10—H10C109.6
C2—C3—C4120.8 (11)H10A—C10—H10C109.5
C5—C3—C4121.6 (11)H10B—C10—H10C109.5
C3—C4—H4A109.3C12—C11—C9118.7 (10)
C3—C4—H4B109.5C12—C11—H11120.7
H4A—C4—H4B109.5C9—C11—H11120.6
C3—C4—H4C109.6N2—C12—C11123.8 (10)
H4A—C4—H4C109.5N2—C12—H12118.1
H4B—C4—H4C109.5C11—C12—H12118.2
C1—N1—Hg1—I179.7 (8)C5—C6—N1—Hg1176.7 (6)
C1—N1—Hg1—I2−58.9 (7)C7—C6—N1—Hg1−1.4 (10)
C1—N1—Hg1—N2177.2 (8)C5—C6—N1—C1−0.1 (13)
C6—N1—Hg1—I1−96.9 (7)C7—C6—N1—C1−178.1 (8)
C6—N1—Hg1—I2124.5 (7)N1—C6—C7—N21.6 (11)
C6—N1—Hg1—N20.6 (7)C5—C6—C7—N2−176.5 (9)
C7—N2—Hg1—I1108.1 (7)N1—C6—C7—C8−178.0 (8)
C7—N2—Hg1—I2−78.2 (8)C5—C6—C7—C84.0 (12)
C7—N2—Hg1—N10.2 (7)C6—C7—N2—Hg1−1.0 (10)
C12—N2—Hg1—I1−68.7 (9)C8—C7—N2—Hg1178.6 (6)
C12—N2—Hg1—I2104.9 (9)C6—C7—N2—C12176.0 (9)
C12—N2—Hg1—N1−176.6 (10)C8—C7—N2—C12−4.5 (14)
C2—C1—N1—C6−0.1 (15)N2—C7—C8—C91.9 (13)
C2—C1—N1—Hg1−176.7 (8)C6—C7—C8—C9−178.6 (8)
N1—C1—C2—C30.7 (16)C7—C8—C9—C111.7 (13)
C1—C2—C3—C5−1.2 (16)C7—C8—C9—C10−179.5 (8)
C1—C2—C3—C4178.6 (11)C8—C9—C11—C12−2.5 (16)
C2—C3—C5—C61.1 (14)C10—C9—C11—C12178.7 (11)
C4—C3—C5—C6−178.7 (10)C9—C11—C12—N2−0.1 (19)
C3—C5—C6—N1−0.5 (14)C11—C12—N2—Hg1−179.4 (10)
C3—C5—C6—C7177.4 (8)C11—C12—N2—C73.6 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2525).

References

  • Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233. [PMC free article] [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, W. T., Wang, M. S., Liu, X., Guo, G. C. & Huang, J. S. (2006). Cryst. Growth Des.6, 2289–2300.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Freire, E., Baggio, S., Baggio, R. & Suescun, L. (1999). J. Chem. Crystallogr.29, 825–830.
  • Htoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct.6, 55–58.
  • Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. [PMC free article] [PubMed]
  • Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
  • Sheldrick, G. M. (1998). SADABS Bruker AXS, Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography