PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1297.
Published online 2008 September 20. doi:  10.1107/S1600536808029917
PMCID: PMC2959483

Diaqua­tetra­chloridotin(IV)–diglyme (1/2)

Abstract

In the title 1:2 adduct, [SnCl4(H2O)2]·2C6H14O3, the SnIV atom (site symmetry 2) adopts a cis-SnO2Cl4 octa­hedral geometry. In the crystal structure, O—H(...)O hydrogen bonds lead to associations of one metal complex and two diglyme mol­ecules.

Related literature

For related structures, see: Valle et al. (1984 [triangle]); Hough et al. (1986 [triangle]); Aza­dmehr et al. (2001 [triangle]). For further synthetic details, see: Hutton & Oakes (1976 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]). For bond valence sum calculations, see: Brese & O’Keeffe (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1297-scheme1.jpg

Experimental

Crystal data

  • [SnCl4(H2O)2]·2C6H14O3
  • M r = 564.86
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1297-efi3.jpg
  • a = 8.4023 (2) Å
  • b = 17.1528 (3) Å
  • c = 15.9612 (4) Å
  • V = 2300.38 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.61 mm−1
  • T = 120 (2) K
  • 0.55 × 0.43 × 0.15 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.472, T max = 0.795
  • 20197 measured reflections
  • 2643 independent reflections
  • 2292 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.050
  • S = 1.04
  • 2643 reflections
  • 121 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK, and DENZO (Otwinowski & Minor, 1997 [triangle]) and SORTAV (Blessing, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029917/bt2792sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029917/bt2792Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

supplementary crystallographic information

Comment

The title compound, (I), (Fig. 1) complements related adducts containing the same metal complex accompanied by various crown ethers (Valle et al., 1984; Hough et al., 1986; Azadmehr et al., 2001).

In (I), the tin(IV) atom lies on a crystallographic twofold rotation axis, and bonds to two water molecules and four chloride ions, with the water O atoms in cis conformation {O1—Sn1—O1i = 82.72 (8)°; i = -x, y, 3/2 - z]. Overall, a distorted octahedral coordination arises for the metal (Table 1). The bond valence sum (BVS) (Brese & O'Keeffe, 1991) for tin is 4.09 (expected value = 4.00).

In the crystal, the Sn(H2O)2Cl4 moiety links to two adjacent C6H14O3 (diglyme) molecules by way of O—H···O hydrogen bonds (Table 2), with each water molecule making two such bonds to the same diglyme species (Fig. 2). This hydrogen bonding pattern may correlate with the fact that the O—C—C—O torsion angles reflect gauche conformations about the C2—C3 and C4—C5 bonds [O2—C2—C3—O3 = 65.6 (2)°; O3—C4—C5—O4 = -64.9 (2)°], whereas the four C—C—O—C conformations are trans. Otherwise, the geometrical paramaters for (I) may be regarded as normal (Allen et al., 1987).

Experimental

Air-stable, colourless slabs of (I) were isolated from the slow evaporation of a methanolic solution (20 ml) containing 0.1 mmol C l3SnCH2CH2CO2H (Hutton & Oakes, 1976) and 0.1 mmol diglyme. M.P. 353–355 K. IR (KBr): 3500–2500, 1363, 1471, 1454, 1354,1287, 1250, 1141, 1102, 1079, 1105, 860, 834, 701, 617 cm-1 Anal: Calc: C 25.52; H 5.71%. Found: C 25.23; H 5.85%.

Refinement

The water H atoms were located in a difference map and their positions were freely refined with the constraint Uiso(H) = 1.2Ueq(O). The C-bound H atoms were placed in calculated positions (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1.
View of the molecular structure of (I) showing 50% displacement ellipsoids. The H atoms are drawn as spheres of arbitrary radius and the hydrogen bonds are shown as double-dashed lines. Symmetry code: (i) -x, y, 3/2 - z.
Fig. 2.
Unit cell packing for (I) showing the isolated hydrogen bonded assembiles of one metal complex and two diglyme molecules. Symmetry code: (i) -x, y, 3/2 - z. The C-bound H atoms are omitted for clarity.

Crystal data

[SnCl4(H2O)2]·2C6H14O3F(000) = 1144
Mr = 564.86Dx = 1.631 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 10481 reflections
a = 8.4023 (2) Åθ = 2.9–27.5°
b = 17.1528 (3) ŵ = 1.61 mm1
c = 15.9612 (4) ÅT = 120 K
V = 2300.38 (9) Å3Slab, colourless
Z = 40.55 × 0.43 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer2643 independent reflections
Radiation source: fine-focus sealed tube2292 reflections with I > 2σ(I)
graphiteRint = 0.037
ω and [var phi] scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −10→10
Tmin = 0.472, Tmax = 0.795k = −19→22
20197 measured reflectionsl = −17→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050w = 1/[σ2(Fo2) + (0.0206P)2 + 1.2513P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2643 reflectionsΔρmax = 0.56 e Å3
121 parametersΔρmin = −0.50 e Å3
0 restraintsExtinction correction: (SHELXL97; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00095 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.00000.165876 (9)0.75000.01280 (7)
Cl10.27717 (5)0.17456 (3)0.72161 (3)0.02257 (11)
Cl20.04156 (6)0.07342 (3)0.85946 (3)0.02251 (11)
O10.02883 (16)0.25927 (8)0.83704 (9)0.0201 (3)
H1−0.023 (2)0.2999 (14)0.8351 (14)0.024*
H20.107 (3)0.2655 (12)0.8617 (14)0.024*
C10.3671 (3)0.19896 (12)0.94703 (16)0.0380 (6)
H1A0.34440.15870.90510.057*
H1B0.31990.18391.00080.057*
H1C0.48260.20450.95350.057*
C20.3303 (2)0.33246 (10)0.97905 (12)0.0211 (4)
H2A0.44540.33510.99200.025*
H2B0.27200.32201.03180.025*
C30.2759 (2)0.40787 (10)0.94202 (13)0.0228 (4)
H3A0.30580.45160.97930.027*
H3B0.32730.41610.88690.027*
C40.0482 (2)0.46917 (10)0.88487 (13)0.0254 (4)
H4A0.10210.47140.82980.030*
H4B0.06900.51870.91480.030*
C5−0.1273 (2)0.45811 (11)0.87301 (13)0.0257 (4)
H5A−0.17980.45200.92810.031*
H5B−0.17330.50440.84490.031*
C6−0.3192 (2)0.38022 (12)0.80483 (15)0.0327 (5)
H6A−0.33360.33370.77000.049*
H6B−0.35870.42610.77470.049*
H6C−0.37860.37400.85730.049*
O20.30068 (16)0.27173 (7)0.92018 (9)0.0260 (3)
O30.10705 (14)0.40525 (7)0.93230 (8)0.0210 (3)
O4−0.15401 (14)0.39017 (7)0.82313 (8)0.0226 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01400 (9)0.00920 (10)0.01519 (11)0.000−0.00062 (6)0.000
Cl10.0149 (2)0.0241 (2)0.0287 (3)0.00062 (16)0.00141 (18)−0.00129 (19)
Cl20.0303 (2)0.0155 (2)0.0217 (3)0.00401 (17)−0.00013 (18)0.00507 (18)
O10.0210 (7)0.0128 (6)0.0265 (8)0.0060 (5)−0.0101 (6)−0.0061 (6)
C10.0429 (13)0.0233 (11)0.0477 (15)0.0116 (9)−0.0239 (11)−0.0025 (10)
C20.0193 (8)0.0252 (10)0.0187 (11)−0.0034 (7)−0.0042 (7)−0.0030 (7)
C30.0215 (9)0.0206 (9)0.0263 (12)−0.0066 (7)−0.0017 (8)−0.0031 (8)
C40.0341 (10)0.0129 (9)0.0291 (12)−0.0003 (7)−0.0054 (9)0.0018 (8)
C50.0334 (11)0.0165 (9)0.0273 (12)0.0086 (7)−0.0029 (8)−0.0030 (8)
C60.0214 (10)0.0325 (11)0.0441 (14)0.0059 (8)−0.0066 (9)−0.0025 (10)
O20.0300 (7)0.0179 (6)0.0300 (8)0.0067 (5)−0.0164 (6)−0.0047 (6)
O30.0199 (6)0.0170 (6)0.0260 (8)−0.0009 (5)−0.0016 (5)0.0034 (5)
O40.0196 (6)0.0183 (6)0.0299 (8)0.0052 (5)−0.0034 (5)−0.0035 (6)

Geometric parameters (Å, °)

Sn1—O12.1343 (13)C2—H2B0.9900
Sn1—O1i2.1343 (13)C3—O31.428 (2)
Sn1—Cl12.3772 (4)C3—H3A0.9900
Sn1—Cl1i2.3772 (4)C3—H3B0.9900
Sn1—Cl2i2.3853 (5)C4—O31.421 (2)
Sn1—Cl22.3853 (5)C4—C51.499 (3)
O1—H10.82 (2)C4—H4A0.9900
O1—H20.77 (2)C4—H4B0.9900
C1—O21.433 (2)C5—O41.429 (2)
C1—H1A0.9800C5—H5A0.9900
C1—H1B0.9800C5—H5B0.9900
C1—H1C0.9800C6—O41.429 (2)
C2—O21.425 (2)C6—H6A0.9800
C2—C31.494 (2)C6—H6B0.9800
C2—H2A0.9900C6—H6C0.9800
O1—Sn1—O1i82.72 (8)H2A—C2—H2B108.4
O1—Sn1—Cl188.04 (4)O3—C3—C2108.66 (14)
O1i—Sn1—Cl186.57 (4)O3—C3—H3A110.0
O1—Sn1—Cl1i86.57 (4)C2—C3—H3A110.0
O1i—Sn1—Cl1i88.04 (4)O3—C3—H3B110.0
Cl1—Sn1—Cl1i172.81 (2)C2—C3—H3B110.0
O1—Sn1—Cl2i172.96 (4)H3A—C3—H3B108.3
O1i—Sn1—Cl2i90.32 (4)O3—C4—C5108.18 (15)
Cl1—Sn1—Cl2i92.608 (16)O3—C4—H4A110.1
Cl1i—Sn1—Cl2i92.169 (17)C5—C4—H4A110.1
O1—Sn1—Cl290.32 (4)O3—C4—H4B110.1
O1i—Sn1—Cl2172.96 (4)C5—C4—H4B110.1
Cl1—Sn1—Cl292.169 (16)H4A—C4—H4B108.4
Cl1i—Sn1—Cl292.608 (16)O4—C5—C4109.14 (14)
Cl2i—Sn1—Cl296.65 (2)O4—C5—H5A109.9
Sn1—O1—H1123.4 (16)C4—C5—H5A109.9
Sn1—O1—H2122.1 (16)O4—C5—H5B109.9
H1—O1—H2111 (2)C4—C5—H5B109.9
O2—C1—H1A109.5H5A—C5—H5B108.3
O2—C1—H1B109.5O4—C6—H6A109.5
H1A—C1—H1B109.5O4—C6—H6B109.5
O2—C1—H1C109.5H6A—C6—H6B109.5
H1A—C1—H1C109.5O4—C6—H6C109.5
H1B—C1—H1C109.5H6A—C6—H6C109.5
O2—C2—C3108.58 (15)H6B—C6—H6C109.5
O2—C2—H2A110.0C2—O2—C1111.81 (14)
C3—C2—H2A110.0C4—O3—C3112.30 (13)
O2—C2—H2B110.0C6—O4—C5111.33 (14)
C3—C2—H2B110.0
O2—C2—C3—O365.6 (2)C5—C4—O3—C3176.00 (15)
O3—C4—C5—O4−64.9 (2)C2—C3—O3—C4−170.23 (16)
C3—C2—O2—C1172.98 (17)C4—C5—O4—C6−175.75 (16)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H2···O20.77 (2)1.88 (2)2.6503 (18)175 (2)
O1—H1···O40.82 (2)1.91 (2)2.7296 (18)175 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2792).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Azadmehr, A., Amini, M. M., Tadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem.24, 459–460.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Bruker (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335–2337.
  • Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser.157, 123–136.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81–84.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography