PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1897.
Published online 2008 September 6. doi:  10.1107/S1600536808028109
PMCID: PMC2959482

2-[(Methyl­sulfan­yl)meth­yl]-1,2-benz­isothia­zol-3(2H)-one 1,1-dioxide

Abstract

In the title mol­ecule, C9H9NO3S2, the essentially planar benzisothia­zole ring system and the C—S—C atoms of the methyl­sulfanyl side chain form an angle of 64.45 (7)°. The structure is devoid of any classical hydrogen bonding. However, weak non-classical inter- and intra­molecular hydrogen bonds of the type C—H(...)O are present.

Related literature

For related literature, see: Bernstein et al. (1994 [triangle]); Masashi et al. (1999 [triangle]); Nagasawa et al. (1995 [triangle]); Siddiqui et al. (2007a [triangle],b [triangle], 2008a [triangle],b [triangle]); Xu et al. (2006 [triangle]); Liang (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1897-scheme1.jpg

Experimental

Crystal data

  • C9H9NO3S2
  • M r = 243.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1897-efi1.jpg
  • a = 7.550 (3) Å
  • b = 17.332 (8) Å
  • c = 9.455 (3) Å
  • β = 124.26 (2)°
  • V = 1022.6 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.51 mm−1
  • T = 173 (2) K
  • 0.18 × 0.16 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.915, T max = 0.970
  • 3975 measured reflections
  • 2322 independent reflections
  • 2004 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.094
  • S = 1.05
  • 2322 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028109/lh2683sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028109/lh2683Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

1,2-benzisothiazole-3-one 1,1-dioxide (saccharin) has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). Particularly, the substituted derivatives with e.g. N-hydroxy and N-alkyl substutuents have shown important biological activities (Nagasawa et al., 1995). Various biologically important saccharin skeletons and their N-alkyl derivatives were efficiently prepared (Xu et al., 2006) by chromium oxide-catalyzed oxidation of N-alkyl(o-methyl)arenesulfonamides in acetonitrile besides the already developed methodology utilizing irradiation techniques (Masashi et al., 1999) for similar type of conversions. In continuation of our research program on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2007a,b,2008a,b), we report the synthesis (see Fig. 3) and crystal structure of the title compound, in this paper.

In the molecular structure (Fig. 1) the benzisothiazole rings system is essentially planar, the maximum deviation of any atom from the mean plane through S1/N1/C1–C7 being 0.0224 (8) Å for atom S1. The side chain comprising of atoms S2/C8/C9 is inclined at an angle 64.45 (7)° with the mean-plane of the benzisothiazole rings system. The structure is devoid of any classical hydrogen bonding. However, non-classical intermolecular hydrogen bond of the type C—H···O are present resulting in dimeric units in an R22(8) motif (Bernstein et al., 1994). In addition, intramolecular hydrogen bonds of the type C—H···O are also present in the structure resulting in an S(7) pattern (Bernstein et al., 1994) (details are in Fig. 2 and Table 1).

Experimental

A suspension of saccharin (I) (1.0 g, 5.46 mmol), sodium sulfite (1.4 g, 10.93 mmol) and an excess of 2-chloro-5-methylaniline (5 ml) was first stirred at room temperature (30 min.) and then under reflux (1.5 hrs). The reaction mixture turned orange red after reflux. Cooled the reaction mixture to room temperature and extracted the product with chloroform (3 X 25 ml). Concentrated the organic layer under reduced pressure (11 torr) to get light yellow product (II) (0.6 g, 2.46 mmol), yield = 45%. Recrystallization Solvent: MeOH:CH3CN (1:1). The solution was subjected to slow evaporation at 313 K to obtain colorless crystals.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl, methyl and methylene C—H distances were set to 0.95, 0.98 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). The final difference map was free of any chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Hydrogen bonding interactions in the unit cell of the title compound indicated by dashed lines, H-atoms not involved in H-bonds have been excluded.
Fig. 3.
Reaction scheme.

Crystal data

C9H9NO3S2F(000) = 504
Mr = 243.29Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2322 reflections
a = 7.550 (3) Åθ = 4.0–27.5°
b = 17.332 (8) ŵ = 0.51 mm1
c = 9.455 (3) ÅT = 173 K
β = 124.26 (2)°Plate, colourless
V = 1022.6 (7) Å30.18 × 0.16 × 0.06 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2322 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
graphiteRint = 0.024
ω and [var phi] scansθmax = 27.5°, θmin = 4.0°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −9→9
Tmin = 0.915, Tmax = 0.970k = −22→19
3975 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.048P)2 + 0.474P] where P = (Fo2 + 2Fc2)/3
2322 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Experimental. m.p. 405–406 K; IR (KBr, νmax, cm-1): CO 1731 (s), SO2 1332 and 1177; 1H-NMR (400 MHz, DMSO-d6) δ: 2.28 (s, 3H, CH3), 4.90 (s, 2H, CH2), 7.98–8.07 (m, 3H, aromatic), 8.13–8.34 (m, 1H, aromatic); 13C-NMR (100 MHz, DMSO-d6) δ: 158.3, 136.7, 135.9, 135.3, 125.9, 125.1, 121.6, 42.6, 15.5 LRMS (ES+): m/z: 244 [M]+ (63.5%).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.06232 (7)0.08010 (3)0.35109 (5)0.02244 (14)
S21.41986 (7)0.24291 (3)0.32581 (6)0.02667 (14)
O10.9265 (2)0.19480 (7)−0.03395 (16)0.0267 (3)
O20.9634 (2)0.10390 (9)0.43595 (17)0.0340 (3)
O31.2696 (2)0.04531 (9)0.45436 (16)0.0328 (3)
N11.0689 (2)0.15451 (9)0.24102 (18)0.0235 (3)
C10.8872 (3)0.02719 (10)0.1645 (2)0.0197 (3)
C20.8048 (3)−0.04560 (11)0.1537 (2)0.0244 (4)
H20.8436−0.07410.25300.029*
C30.6623 (3)−0.07501 (10)−0.0102 (2)0.0255 (4)
H30.6023−0.1248−0.02310.031*
C40.6060 (3)−0.03308 (11)−0.1554 (2)0.0249 (4)
H40.5069−0.0543−0.26550.030*
C50.6929 (3)0.03959 (11)−0.1413 (2)0.0224 (4)
H50.65590.0680−0.24040.027*
C60.8348 (3)0.06950 (10)0.0209 (2)0.0192 (3)
C70.9421 (3)0.14577 (10)0.0633 (2)0.0202 (3)
C81.1816 (3)0.22693 (11)0.3227 (2)0.0253 (4)
H8A1.22150.22730.44200.030*
H8B1.08170.27040.26180.030*
C91.6129 (3)0.18644 (12)0.5098 (2)0.0320 (4)
H9A1.75290.18990.52610.038*
H9B1.56640.13250.49160.038*
H9C1.62440.20630.61170.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0225 (2)0.0275 (2)0.0162 (2)−0.00213 (16)0.01023 (18)−0.00010 (16)
S20.0260 (3)0.0289 (3)0.0266 (2)−0.00508 (18)0.0157 (2)−0.00217 (18)
O10.0280 (7)0.0252 (7)0.0258 (6)−0.0001 (5)0.0145 (6)0.0052 (5)
O20.0433 (8)0.0417 (8)0.0282 (7)−0.0045 (7)0.0270 (6)−0.0055 (6)
O30.0238 (7)0.0406 (8)0.0223 (6)0.0006 (6)0.0059 (6)0.0055 (6)
N10.0253 (8)0.0243 (8)0.0186 (7)−0.0056 (6)0.0109 (6)−0.0024 (6)
C10.0178 (8)0.0236 (9)0.0176 (7)0.0014 (6)0.0099 (7)0.0003 (6)
C20.0266 (9)0.0235 (9)0.0255 (8)0.0020 (7)0.0160 (8)0.0046 (7)
C30.0251 (9)0.0205 (9)0.0324 (9)−0.0007 (7)0.0172 (8)−0.0016 (7)
C40.0222 (8)0.0275 (9)0.0212 (8)−0.0011 (7)0.0099 (7)−0.0046 (7)
C50.0216 (8)0.0258 (9)0.0180 (8)0.0017 (7)0.0102 (7)0.0012 (7)
C60.0169 (8)0.0223 (8)0.0187 (8)0.0013 (6)0.0101 (7)0.0009 (6)
C70.0174 (8)0.0231 (9)0.0204 (8)0.0017 (6)0.0108 (7)0.0010 (6)
C80.0231 (9)0.0247 (9)0.0272 (9)−0.0027 (7)0.0135 (8)−0.0067 (7)
C90.0227 (9)0.0401 (11)0.0274 (9)−0.0025 (8)0.0106 (8)−0.0025 (8)

Geometric parameters (Å, °)

S1—O31.4304 (15)C3—C41.392 (3)
S1—O21.4306 (14)C3—H30.9500
S1—N11.6754 (16)C4—C51.392 (3)
S1—C11.7537 (18)C4—H40.9500
S2—C81.804 (2)C5—C61.385 (2)
S2—C91.804 (2)C5—H50.9500
O1—C71.208 (2)C6—C71.483 (2)
N1—C71.397 (2)C8—H8A0.9900
N1—C81.468 (2)C8—H8B0.9900
C1—C21.385 (3)C9—H9A0.9800
C1—C61.390 (2)C9—H9B0.9800
C2—C31.393 (3)C9—H9C0.9800
C2—H20.9500
O3—S1—O2117.06 (9)C6—C5—C4118.30 (16)
O3—S1—N1110.18 (8)C6—C5—H5120.9
O2—S1—N1109.50 (9)C4—C5—H5120.9
O3—S1—C1112.44 (9)C5—C6—C1120.09 (16)
O2—S1—C1112.28 (9)C5—C6—C7126.71 (15)
N1—S1—C192.68 (8)C1—C6—C7113.20 (15)
C8—S2—C9100.92 (9)O1—C7—N1123.12 (16)
C7—N1—C8121.81 (15)O1—C7—C6128.06 (15)
C7—N1—S1115.07 (12)N1—C7—C6108.81 (14)
C8—N1—S1122.85 (12)N1—C8—S2114.65 (12)
C2—C1—C6122.64 (16)N1—C8—H8A108.6
C2—C1—S1127.13 (13)S2—C8—H8A108.6
C6—C1—S1110.22 (13)N1—C8—H8B108.6
C1—C2—C3116.69 (16)S2—C8—H8B108.6
C1—C2—H2121.7H8A—C8—H8B107.6
C3—C2—H2121.7S2—C9—H9A109.5
C2—C3—C4121.45 (17)S2—C9—H9B109.5
C2—C3—H3119.3H9A—C9—H9B109.5
C4—C3—H3119.3S2—C9—H9C109.5
C5—C4—C3120.82 (16)H9A—C9—H9C109.5
C5—C4—H4119.6H9B—C9—H9C109.5
C3—C4—H4119.6
O3—S1—N1—C7116.17 (13)C4—C5—C6—C10.0 (3)
O2—S1—N1—C7−113.73 (13)C4—C5—C6—C7−179.11 (16)
C1—S1—N1—C71.06 (13)C2—C1—C6—C50.8 (3)
O3—S1—N1—C8−69.74 (16)S1—C1—C6—C5−178.13 (13)
O2—S1—N1—C860.36 (16)C2—C1—C6—C7−179.96 (15)
C1—S1—N1—C8175.15 (14)S1—C1—C6—C71.10 (18)
O3—S1—C1—C266.76 (18)C8—N1—C7—O14.5 (3)
O2—S1—C1—C2−67.75 (18)S1—N1—C7—O1178.63 (14)
N1—S1—C1—C2179.89 (16)C8—N1—C7—C6−174.75 (14)
O3—S1—C1—C6−114.36 (13)S1—N1—C7—C6−0.59 (17)
O2—S1—C1—C6111.13 (13)C5—C6—C7—O1−0.4 (3)
N1—S1—C1—C6−1.22 (13)C1—C6—C7—O1−179.53 (17)
C6—C1—C2—C3−0.8 (3)C5—C6—C7—N1178.80 (16)
S1—C1—C2—C3177.98 (13)C1—C6—C7—N1−0.37 (19)
C1—C2—C3—C40.0 (3)C7—N1—C8—S2−76.41 (19)
C2—C3—C4—C50.8 (3)S1—N1—C8—S2109.89 (14)
C3—C4—C5—C6−0.8 (3)C9—S2—C8—N1−82.19 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.493.390 (2)158
C9—H9B···O30.982.563.383 (3)142

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2683).

References

  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910
  • Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.
  • Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem.38, 1865–1871. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007a). Acta Cryst. E63, o4116.
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008a). Acta Cryst. E64, o724. [PMC free article] [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008b). Acta Cryst. E64, o859. [PMC free article] [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4001.
  • Xu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902–7910.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography