PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1232.
Published online 2008 September 6. doi:  10.1107/S1600536808021879
PMCID: PMC2959478

Bis(ethano­lato-κO)(5,10,15,20-tetra­phenyl­calix[4]pyrrole)manganese(III) hexa­fluoro­phosphate

Abstract

The title compound, [Mn(C2H5O)2(C44H28N4)]PF6, was synthesized from manganese(III) 2,4-penta­nedionate and 5,10,15,20-tetra­phenyl­calix[4]pyrrole by a hydro­thermal reaction. The MnIII atom is located on an inversion centre and the asymmetric unit comprises one half-formula unit. The MnIII ion is hexa­coordinated by four N atoms from one 5,10,15,20-tetra­phenyl­calix[4]pyrrole ligand and two O atoms from two deprotonated ethanol mol­ecules. The equatorially located atoms (the Mn and four N atoms) are planar. The dihedral angles between the planes of the phenyl rings and the equatorial plane are 53.3 (2) and 81.8 (2)°. One hexa­fluoro­phosphate anion balances the charge.

Related literature

For related literature, see: Church & Halvorson (1959 [triangle]); Chung et al. (1971 [triangle]); Okabe & Oya (2000 [triangle]); Serre et al. (2005 [triangle]); Pocker & Fong (1980 [triangle]); Scapin et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1232-scheme1.jpg

Experimental

Crystal data

  • [Mn(C2H5O)2(C44H28N4)]PF6
  • M r = 902.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1232-efi1.jpg
  • a = 10.7487 (8) Å
  • b = 16.8682 (14) Å
  • c = 11.9913 (19) Å
  • β = 109.412 (9)°
  • V = 2050.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 293 (2) K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.835, T max = 0.910
  • 4407 measured reflections
  • 3535 independent reflections
  • 2142 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.214
  • S = 1.00
  • 3535 reflections
  • 284 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808021879/kp2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021879/kp2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NSFC (grant No. 20776081).

supplementary crystallographic information

Comment

In recent years, nitrogen-containing organics have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound, {[5,10,15,20-tetraphenyl-calix[4]pyrrole]manganese(III) bis-ethanol} hexafluorophosphate.

The MnIII ion is hexa-coordinated with four N atoms from one 5,10,15,20-tetraphenyl-calix[4]pyrrole ligand and two O atoms from two ethanol molecules (Fig. 1). One hexafluorophosphate anion acts as charge balance. MnIII is located at the inversion centre and the asymmetric unit comprises one-half molecule. The MnIII ion is hexa-coordinated with four N atoms from one 5,10,15,20-tetraphenyl-calix[4]pyrrole ligand and two O atoms from two ethanol molecules. The equatorially located atoms Mn(1), N(1), N(2), N(1 A), and N(2 A) are planar. The dihedral angles between the planes of Ph rings [C(11), C(12), C(13), C(14), C(15), C(16)] and [C(17), C(18), C(19), C(20), C(21), C(22)] and quatorial plane are 53.3 (2) and 81.8 (2) Å, respectively. The Mn—N and Mn—O bond lengths are in the range of 2.004 (3)–2.018 (3) and 2.260 (3) Å, respectively (Table 1).

Experimental

A mixture of manganese(III) 2,4-pentanedionate (0.5 mmol), 5,10,15,20-tetraphenyl-calix[4]pyrrole (0.5 mmol), H2O (8 ml) and ethanol (8 mL) in a 25 mL Teflon-lined stainless steel autoclave was kept at 433 K for three days. Red crystals were obtained after cooling to room temperature with a yield of 18%. Anal. Calc. for C48H38MnN4O2F6P: C 66.61, H 3.82, N 6.48%; Found: C 66.65, H 3.78, N 6.52%.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The molecular structure of (I) drawn with the 30% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry codes used: - x + 2,-y,-z + 2; - x +1,-y,-z).

Crystal data

[Mn(C2H5O)2(C44H28N4)]PF6F(000) = 928
Mr = 902.73Dx = 1.462 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3535 reflections
a = 10.7487 (8) Åθ = 2.2–25.0°
b = 16.8682 (14) ŵ = 0.44 mm1
c = 11.9913 (19) ÅT = 293 K
β = 109.412 (9)°Block, yellow
V = 2050.6 (4) Å30.43 × 0.28 × 0.22 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer3535 independent reflections
Radiation source: fine-focus sealed tube2142 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −1→12
Tmin = 0.835, Tmax = 0.910k = −1→20
4407 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.135P)2] where P = (Fo2 + 2Fc2)/3
3535 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.00000.00001.00000.0507 (3)
C10.8291 (4)0.0451 (2)0.7085 (3)0.0579 (10)
C20.8243 (4)0.0985 (2)0.7966 (4)0.0572 (10)
C30.7590 (4)0.1738 (3)0.7732 (4)0.0670 (12)
H3A0.71830.19610.69910.080*
C40.7671 (5)0.2059 (3)0.8768 (4)0.0680 (12)
H4A0.73110.25410.88810.082*
C50.8417 (4)0.1524 (2)0.9685 (4)0.0572 (10)
C60.8735 (4)0.1665 (2)1.0892 (4)0.0570 (10)
C70.9596 (4)0.1198 (2)1.1763 (4)0.0551 (9)
C81.0066 (4)0.1385 (3)1.2992 (4)0.0617 (10)
H8A0.98200.18211.33450.074*
C91.0931 (4)0.0817 (3)1.3555 (4)0.0598 (10)
H9A1.14100.07981.43580.072*
C101.0973 (4)0.0248 (2)1.2677 (3)0.0542 (9)
C110.7496 (4)0.0648 (2)0.5827 (4)0.0594 (10)
C120.8044 (5)0.0722 (3)0.4937 (4)0.0697 (12)
H12A0.89480.06540.51150.084*
C130.7273 (6)0.0893 (3)0.3793 (5)0.0814 (14)
H13A0.76550.09200.32020.098*
C140.5958 (6)0.1024 (3)0.3521 (5)0.0864 (16)
H14A0.54480.11560.27520.104*
C150.5383 (5)0.0959 (3)0.4383 (5)0.0862 (15)
H15A0.44810.10410.41930.103*
C160.6152 (5)0.0771 (3)0.5547 (4)0.0701 (12)
H16A0.57610.07280.61290.084*
C170.8100 (4)0.2373 (2)1.1233 (4)0.0560 (10)
C180.6787 (5)0.2366 (3)1.1115 (4)0.0735 (12)
H18A0.62850.19151.08300.088*
C190.6202 (5)0.3030 (3)1.1418 (5)0.0822 (14)
H19A0.53140.30191.13460.099*
C200.6936 (6)0.3702 (3)1.1824 (4)0.0824 (15)
H20A0.65430.41451.20270.099*
C210.8222 (6)0.3720 (3)1.1929 (5)0.0829 (14)
H21A0.87120.41781.21970.099*
C220.8817 (5)0.3065 (3)1.1642 (5)0.0742 (13)
H22A0.97070.30841.17230.089*
C231.2032 (10)0.1503 (5)1.0298 (13)0.204 (6)
H23A1.11970.17431.02560.245*
H23B1.25370.14611.11330.245*
C241.2665 (15)0.2060 (6)0.9868 (11)0.227 (6)
H24A1.28410.25171.03740.341*
H24B1.21190.22100.90860.341*
H24C1.34810.18460.98390.341*
P10.50000.00000.00000.1018 (9)
N10.8781 (3)0.0872 (2)0.9162 (3)0.0541 (8)
N21.0169 (3)0.05011 (19)1.1572 (3)0.0552 (8)
F10.6259 (11)0.0076 (5)0.0792 (8)0.217 (3)
F20.4786 (14)0.0803 (9)−0.0209 (16)0.350 (8)
F30.460 (2)0.0081 (15)0.0848 (14)0.387 (10)
O11.1729 (3)0.07288 (19)0.9912 (3)0.0787 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0513 (5)0.0471 (5)0.0521 (5)0.0032 (3)0.0152 (4)−0.0035 (3)
C10.062 (2)0.057 (2)0.052 (2)0.0003 (19)0.0165 (19)−0.0015 (18)
C20.056 (2)0.058 (2)0.055 (2)0.0046 (19)0.0136 (18)0.0003 (18)
C30.077 (3)0.055 (2)0.059 (2)0.014 (2)0.010 (2)0.0028 (19)
C40.076 (3)0.056 (2)0.069 (3)0.017 (2)0.021 (2)0.000 (2)
C50.057 (2)0.054 (2)0.060 (2)0.0050 (18)0.0173 (19)−0.0075 (18)
C60.058 (2)0.049 (2)0.064 (2)−0.0013 (18)0.0195 (19)−0.0075 (18)
C70.057 (2)0.052 (2)0.059 (2)0.0011 (18)0.0225 (19)−0.0026 (18)
C80.073 (3)0.054 (2)0.060 (2)0.003 (2)0.024 (2)−0.0111 (19)
C90.066 (3)0.057 (2)0.053 (2)0.004 (2)0.0163 (19)−0.0026 (19)
C100.058 (2)0.051 (2)0.053 (2)−0.0007 (19)0.0185 (19)−0.0005 (17)
C110.068 (3)0.050 (2)0.057 (2)−0.0011 (19)0.016 (2)−0.0018 (18)
C120.071 (3)0.071 (3)0.065 (3)−0.001 (2)0.019 (2)0.005 (2)
C130.098 (4)0.078 (3)0.066 (3)0.001 (3)0.026 (3)0.010 (2)
C140.095 (4)0.089 (4)0.060 (3)−0.005 (3)0.005 (3)0.008 (3)
C150.071 (3)0.086 (4)0.083 (3)0.008 (3)0.002 (3)0.004 (3)
C160.062 (3)0.078 (3)0.065 (3)0.003 (2)0.014 (2)0.002 (2)
C170.056 (2)0.054 (2)0.057 (2)0.0087 (19)0.0183 (18)−0.0007 (18)
C180.067 (3)0.061 (3)0.092 (3)0.004 (2)0.026 (2)−0.009 (2)
C190.073 (3)0.083 (3)0.098 (4)0.019 (3)0.038 (3)0.000 (3)
C200.115 (5)0.065 (3)0.070 (3)0.031 (3)0.035 (3)−0.004 (2)
C210.095 (4)0.062 (3)0.093 (4)0.006 (3)0.031 (3)−0.015 (3)
C220.074 (3)0.057 (3)0.093 (3)−0.004 (2)0.030 (3)−0.015 (2)
C230.187 (9)0.105 (6)0.404 (18)−0.072 (6)0.210 (11)−0.095 (9)
C240.39 (2)0.111 (7)0.234 (13)−0.052 (10)0.170 (13)−0.041 (7)
P10.0807 (16)0.1047 (19)0.1054 (19)0.0316 (13)0.0113 (14)−0.0304 (15)
N10.0532 (18)0.0542 (18)0.0538 (18)0.0027 (15)0.0164 (15)−0.0062 (14)
N20.0538 (19)0.0549 (19)0.0559 (18)0.0009 (15)0.0171 (15)−0.0046 (15)
F10.216 (9)0.238 (8)0.206 (8)−0.015 (6)0.080 (7)−0.014 (5)
F20.338 (16)0.247 (13)0.40 (2)0.005 (12)0.030 (15)−0.013 (13)
F30.346 (19)0.47 (2)0.288 (18)0.205 (16)0.030 (14)0.022 (15)
O10.0648 (19)0.0609 (19)0.116 (3)−0.0143 (15)0.0377 (19)−0.0146 (18)

Geometric parameters (Å, °)

Mn1—N12.004 (3)C13—C141.358 (8)
Mn1—N1i2.004 (3)C13—H13A0.9300
Mn1—N22.018 (3)C14—C151.373 (8)
Mn1—N2i2.018 (3)C14—H14A0.9300
Mn1—O1i2.260 (3)C15—C161.402 (7)
Mn1—O12.260 (3)C15—H15A0.9300
C1—C10i1.395 (6)C16—H16A0.9300
C1—C21.403 (6)C17—C181.371 (6)
C1—C111.504 (6)C17—C221.394 (6)
C2—N11.369 (5)C18—C191.390 (7)
C2—C31.432 (6)C18—H18A0.9300
C3—C41.331 (6)C19—C201.375 (8)
C3—H3A0.9300C19—H19A0.9300
C4—C51.442 (6)C20—C211.346 (8)
C4—H4A0.9300C20—H20A0.9300
C5—N11.386 (5)C21—C221.377 (7)
C5—C61.393 (6)C21—H21A0.9300
C6—C71.388 (6)C22—H22A0.9300
C6—C171.497 (5)C23—C241.358 (11)
C7—N21.381 (5)C23—O11.388 (8)
C7—C81.425 (6)C23—H23A0.9700
C8—C91.348 (6)C23—H23B0.9700
C8—H8A0.9300C24—H24A0.9600
C9—C101.436 (6)C24—H24B0.9600
C9—H9A0.9300C24—H24C0.9600
C10—N21.387 (5)P1—F31.23 (2)
C10—C1i1.395 (6)P1—F3ii1.23 (2)
C11—C121.385 (6)P1—F1ii1.376 (11)
C11—C161.385 (6)P1—F11.376 (11)
C12—C131.378 (7)P1—F21.382 (15)
C12—H12A0.9300P1—F2ii1.382 (15)
N1—Mn1—N1i180.000 (1)C14—C15—H15A119.9
N1—Mn1—N290.13 (13)C16—C15—H15A119.9
N1i—Mn1—N289.87 (13)C11—C16—C15119.8 (5)
N1—Mn1—N2i89.87 (13)C11—C16—H16A120.1
N1i—Mn1—N2i90.13 (13)C15—C16—H16A120.1
N2—Mn1—N2i180.000 (1)C18—C17—C22118.2 (4)
N1—Mn1—O1i90.70 (13)C18—C17—C6120.8 (4)
N1i—Mn1—O1i89.30 (13)C22—C17—C6121.0 (4)
N2—Mn1—O1i90.25 (13)C17—C18—C19120.4 (5)
N2i—Mn1—O1i89.75 (13)C17—C18—H18A119.8
N1—Mn1—O189.30 (13)C19—C18—H18A119.8
N1i—Mn1—O190.70 (13)C20—C19—C18120.0 (5)
N2—Mn1—O189.75 (13)C20—C19—H19A120.0
N2i—Mn1—O190.25 (13)C18—C19—H19A120.0
O1i—Mn1—O1180.0C21—C20—C19120.2 (5)
C10i—C1—C2123.3 (4)C21—C20—H20A119.9
C10i—C1—C11119.2 (4)C19—C20—H20A119.9
C2—C1—C11117.5 (4)C20—C21—C22120.4 (5)
N1—C2—C1126.2 (4)C20—C21—H21A119.8
N1—C2—C3109.7 (4)C22—C21—H21A119.8
C1—C2—C3124.1 (4)C21—C22—C17120.8 (5)
C4—C3—C2107.6 (4)C21—C22—H22A119.6
C4—C3—H3A126.2C17—C22—H22A119.6
C2—C3—H3A126.2C24—C23—O1128.0 (9)
C3—C4—C5107.7 (4)C24—C23—H23A105.3
C3—C4—H4A126.1O1—C23—H23A105.3
C5—C4—H4A126.1C24—C23—H23B105.3
N1—C5—C6126.7 (4)O1—C23—H23B105.3
N1—C5—C4108.7 (3)H23A—C23—H23B106.0
C6—C5—C4124.6 (4)C23—C24—H24A109.5
C7—C6—C5123.8 (4)C23—C24—H24B109.5
C7—C6—C17119.9 (4)H24A—C24—H24B109.5
C5—C6—C17116.3 (4)C23—C24—H24C109.5
N2—C7—C6125.6 (4)H24A—C24—H24C109.5
N2—C7—C8109.6 (3)H24B—C24—H24C109.5
C6—C7—C8124.8 (4)F3—P1—F3ii180 (2)
C9—C8—C7108.0 (4)F3—P1—F1ii92.8 (9)
C9—C8—H8A126.0F3ii—P1—F1ii87.2 (9)
C7—C8—H8A126.0F3—P1—F187.2 (9)
C8—C9—C10107.0 (4)F3ii—P1—F192.8 (9)
C8—C9—H9A126.5F1ii—P1—F1180.0 (13)
C10—C9—H9A126.5F3—P1—F287.6 (9)
N2—C10—C1i125.9 (4)F3ii—P1—F292.4 (9)
N2—C10—C9109.4 (4)F1ii—P1—F284.2 (6)
C1i—C10—C9124.7 (4)F1—P1—F295.8 (6)
C12—C11—C16118.4 (4)F3—P1—F2ii92.4 (9)
C12—C11—C1123.1 (4)F3ii—P1—F2ii87.6 (9)
C16—C11—C1118.4 (4)F1ii—P1—F2ii95.8 (6)
C13—C12—C11121.1 (5)F1—P1—F2ii84.2 (6)
C13—C12—H12A119.4F2—P1—F2ii180.0 (3)
C11—C12—H12A119.4C2—N1—C5106.2 (3)
C14—C13—C12120.4 (5)C2—N1—Mn1127.3 (3)
C14—C13—H13A119.8C5—N1—Mn1126.3 (3)
C12—C13—H13A119.8C7—N2—C10105.9 (3)
C13—C14—C15120.0 (5)C7—N2—Mn1127.2 (3)
C13—C14—H14A120.0C10—N2—Mn1126.7 (3)
C15—C14—H14A120.0C23—O1—Mn1127.0 (4)
C14—C15—C16120.2 (5)

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2179).

References

  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J.11, 469–475. [PubMed]
  • Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125. [PubMed]
  • Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417. [PubMed]
  • Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049. [PubMed]
  • Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088. [PubMed]
  • Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem.44, 654–658. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography