PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1262.
Published online 2008 September 13. doi:  10.1107/S1600536808028687
PMCID: PMC2959477

Bis[μ-3-(2-hydroxy­ethyl)-2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-olato-κ3 N,O:O]bis[aquachloridocopper(II)]

Abstract

In the dinuclear centrosymmetric copper(II) title compound, [Cu2(C11H11N2O2)2Cl2(H2O)2], each CuII ion has a slightly distorted trigonal-bipyramidal geometry and is coordinated by one N and one O atom from one 3-(2-hydroxy­ethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, another O atom from the second ligand, one water mol­ecule and one Cl atom. The crystal structure involves inter­molecular C—H(...)Cl, O—H(...)Cl and O—H(...)O hydrogen bonds

Related literature

For related literature, see: Bayot et al. (2006 [triangle]); Chen et al. (2007 [triangle]); Sun et al. (2008 [triangle]); Wu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1262-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C11H11N2O2)2Cl2(H2O)2]
  • M r = 672.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1262-efi1.jpg
  • a = 9.391 (3) Å
  • b = 11.322 (3) Å
  • c = 11.905 (4) Å
  • β = 102.414 (18)°
  • V = 1236.2 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.99 mm−1
  • T = 293 (2) K
  • 0.25 × 0.12 × 0.08 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.890, T max = 1.000 (expected range = 0.759–0.853)
  • 12472 measured reflections
  • 2826 independent reflections
  • 2249 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.115
  • S = 1.01
  • 2826 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028687/sg2256sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028687/sg2256Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Chen et al., 2007). Quinolin-8-ol is one such ligand and several crystal structures of complexes containing it have been reported (Wu et al., 2006). Our group has recently reported a new manganese compound with this 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands (Sun et al., 2008). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), each Cu(II) ion has a slightly distorted trigonal–bipyramidal geometry and is coordinated by one N atoms and one O atom from one 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, the another O atom of the second 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, together with one water molecule and one Cl atom (Fig. 1). The bond lengths and angles are shown in Table 1. In the crystal structure, the intermolecular O—H···O hydrogen bonds connect the molecules of (I) into a two-dimensional layer along the [010] axis, Fig. 2. Two neighboring net framework layers are interconnected through intermolecular C—H···Cl, O—H···Cl hydrogen bonds forming a three-dimensionnal framework along the [100] axis, Fig. 3, Table 2.

Experimental

All chemicals used (reagent grade) were commercially available. a aqueous solution (5 ml) of CuCl2 (28 mg, 0.1 mmol) was added with constant stirring to a ethanol solution (10 ml) containing 3-(2-hydroxyethyl)-2-methyl-9-hydroxylpyrido[1,2-a] pyrimidin-4-one (22 mg, 0.1 mmol) then filtered off. After a few days, colorless well shaped single crystals in the form of prisms deposited in the other liquid. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement

H atoms bound to carbon were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C). The H of hydroxyl and water were refined independently with isotropic displacement parameters.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Two-dimensional net framework of the title compound viewed along b axis. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 3.
Three-dimensional net framework of the title compound viewed along a axis. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu2(C11H11N2O2)2Cl2(H2O)2]F(000) = 684
Mr = 672.45Dx = 1.807 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2976 reflections
a = 9.391 (3) Åθ = 2.5–27.5°
b = 11.322 (3) ŵ = 1.99 mm1
c = 11.905 (4) ÅT = 293 K
β = 102.414 (18)°Prism, colorless
V = 1236.2 (6) Å30.25 × 0.12 × 0.08 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer2826 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −14→14
Tmin = 0.890, Tmax = 1.000l = −15→15
12472 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.059P)2 + 0.8671P] where P = (Fo2 + 2Fc2)/3
2826 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.09275 (4)0.92674 (4)0.60256 (3)0.02472 (15)
C10.3469 (3)1.0520 (3)0.5971 (3)0.0230 (7)
C20.2373 (4)1.1028 (3)0.5076 (3)0.0241 (7)
C30.2761 (4)1.1877 (3)0.4388 (3)0.0315 (8)
H3A0.20691.21980.37880.038*
C40.4213 (4)1.2264 (3)0.4592 (3)0.0335 (8)
H4A0.44741.28550.41330.040*
C50.5234 (4)1.1795 (3)0.5441 (3)0.0309 (8)
H5A0.61901.20670.55660.037*
C60.6009 (4)1.0432 (3)0.7013 (3)0.0294 (8)
C70.5562 (4)0.9521 (3)0.7664 (3)0.0284 (8)
C80.4116 (4)0.9186 (3)0.7479 (3)0.0259 (7)
C90.3610 (4)0.8284 (3)0.8226 (3)0.0342 (9)
H9A0.25760.81760.79780.051*
H9B0.38330.85500.90100.051*
H9C0.40970.75480.81690.051*
C100.6746 (4)0.8972 (3)0.8572 (3)0.0319 (8)
H10A0.64150.82090.87860.038*
H10B0.76010.88410.82540.038*
C110.7161 (5)0.9729 (4)0.9631 (3)0.0421 (10)
H11A0.76001.04530.94320.051*
H11B0.62850.99390.98930.051*
O10.7242 (3)1.0832 (2)0.7112 (3)0.0412 (7)
O20.8149 (3)0.9165 (3)1.0542 (3)0.0441 (8)
O30.1054 (2)1.0586 (2)0.4999 (2)0.0313 (6)
O50.0115 (3)1.0044 (3)0.7446 (2)0.0542 (9)
H5C0.06330.98350.80590.081*
H5D−0.08660.97800.74080.081*
N10.3065 (3)0.9674 (2)0.6621 (2)0.0244 (6)
N20.4871 (3)1.0915 (2)0.6127 (2)0.0253 (6)
Cl10.07956 (10)0.73242 (8)0.63230 (9)0.0408 (3)
H2A0.775 (6)0.878 (5)1.088 (5)0.07 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0176 (2)0.0284 (2)0.0255 (2)−0.00189 (17)−0.00112 (16)0.00366 (16)
C10.0188 (16)0.0241 (16)0.0247 (17)−0.0006 (13)0.0013 (13)−0.0017 (13)
C20.0168 (15)0.0286 (17)0.0260 (17)0.0011 (13)0.0022 (13)−0.0013 (13)
C30.0283 (18)0.0332 (19)0.032 (2)0.0011 (16)0.0041 (15)0.0050 (15)
C40.0291 (18)0.032 (2)0.040 (2)−0.0036 (16)0.0079 (16)0.0057 (16)
C50.0222 (17)0.0316 (19)0.039 (2)−0.0077 (15)0.0074 (15)−0.0011 (15)
C60.0162 (16)0.0350 (19)0.0337 (19)0.0002 (14)−0.0021 (14)−0.0057 (15)
C70.0195 (16)0.0326 (19)0.0299 (18)0.0024 (14)−0.0019 (14)−0.0050 (14)
C80.0214 (16)0.0276 (17)0.0253 (17)0.0036 (14)−0.0025 (13)−0.0005 (13)
C90.0294 (19)0.041 (2)0.0278 (19)0.0015 (16)−0.0038 (15)0.0064 (15)
C100.0212 (17)0.035 (2)0.035 (2)0.0064 (15)−0.0023 (15)−0.0025 (15)
C110.037 (2)0.041 (2)0.040 (2)0.0059 (18)−0.0092 (17)−0.0046 (18)
O10.0170 (12)0.0495 (17)0.0534 (18)−0.0039 (12)−0.0007 (12)0.0014 (13)
O20.0312 (16)0.061 (2)0.0326 (16)0.0038 (15)−0.0087 (13)0.0010 (14)
O30.0160 (11)0.0413 (15)0.0321 (14)−0.0044 (10)−0.0046 (10)0.0130 (11)
O50.0263 (14)0.096 (3)0.0377 (16)0.0102 (17)0.0005 (12)−0.0210 (17)
N10.0200 (14)0.0247 (14)0.0264 (15)0.0009 (11)0.0005 (11)0.0007 (11)
N20.0162 (13)0.0282 (15)0.0308 (16)−0.0025 (11)0.0039 (11)−0.0015 (12)
Cl10.0355 (5)0.0293 (5)0.0518 (6)−0.0015 (4)−0.0037 (4)0.0049 (4)

Geometric parameters (Å, °)

Cu1—O31.949 (2)C6—N21.438 (4)
Cu1—O3i2.001 (2)C7—C81.382 (5)
Cu1—N12.033 (3)C7—C101.508 (5)
Cu1—O52.184 (3)C8—N11.375 (4)
Cu1—Cl12.2361 (11)C8—C91.496 (5)
Cu1—Cl12.2361 (11)C9—H9A0.9600
C1—N11.336 (4)C9—H9B0.9600
C1—N21.365 (4)C9—H9C0.9600
C1—C21.434 (5)C10—C111.505 (5)
C2—O31.320 (4)C10—H10A0.9700
C2—C31.363 (5)C10—H10B0.9700
C3—C41.403 (5)C11—O21.419 (5)
C3—H3A0.9300C11—H11A0.9700
C4—C51.344 (5)C11—H11B0.9700
C4—H4A0.9300O2—H2A0.75 (6)
C5—N21.377 (4)O3—Cu1i2.001 (2)
C5—H5A0.9300O5—H5C0.8200
C6—O11.225 (4)O5—H5D0.9599
C6—C71.407 (5)Cl1—Cl10.000 (3)
O3—Cu1—O3i74.24 (11)N1—C8—C7122.1 (3)
O3—Cu1—N181.74 (10)N1—C8—C9116.6 (3)
O3i—Cu1—N1155.95 (11)C7—C8—C9121.3 (3)
O3—Cu1—O5104.82 (13)C8—C9—H9A109.5
O3i—Cu1—O590.24 (11)C8—C9—H9B109.5
N1—Cu1—O597.00 (11)H9A—C9—H9B109.5
O3—Cu1—Cl1149.96 (9)C8—C9—H9C109.5
O3i—Cu1—Cl195.88 (7)H9A—C9—H9C109.5
N1—Cu1—Cl1104.60 (8)H9B—C9—H9C109.5
O5—Cu1—Cl1103.49 (10)C11—C10—C7112.6 (3)
O3—Cu1—Cl1149.96 (9)C11—C10—H10A109.1
O3i—Cu1—Cl195.88 (7)C7—C10—H10A109.1
N1—Cu1—Cl1104.60 (8)C11—C10—H10B109.1
O5—Cu1—Cl1103.49 (10)C7—C10—H10B109.1
Cl1—Cu1—Cl10.00 (7)H10A—C10—H10B107.8
N1—C1—N2122.8 (3)O2—C11—C10113.2 (3)
N1—C1—C2118.1 (3)O2—C11—H11A108.9
N2—C1—C2119.1 (3)C10—C11—H11A108.9
O3—C2—C3126.4 (3)O2—C11—H11B108.9
O3—C2—C1114.4 (3)C10—C11—H11B108.9
C3—C2—C1119.2 (3)H11A—C11—H11B107.8
C2—C3—C4119.5 (3)C11—O2—H2A111 (5)
C2—C3—H3A120.3C2—O3—Cu1115.4 (2)
C4—C3—H3A120.3C2—O3—Cu1i138.3 (2)
C5—C4—C3121.1 (3)Cu1—O3—Cu1i105.76 (11)
C5—C4—H4A119.4Cu1—O5—H5C109.5
C3—C4—H4A119.4Cu1—O5—H5D109.3
C4—C5—N2120.3 (3)H5C—O5—H5D109.3
C4—C5—H5A119.8C1—N1—C8118.1 (3)
N2—C5—H5A119.8C1—N1—Cu1110.0 (2)
O1—C6—C7127.3 (3)C8—N1—Cu1131.7 (2)
O1—C6—N2117.9 (3)C1—N2—C5120.7 (3)
C7—C6—N2114.8 (3)C1—N2—C6121.2 (3)
C8—C7—C6120.9 (3)C5—N2—C6118.1 (3)
C8—C7—C10123.3 (3)Cl1—Cl1—Cu10(10)
C6—C7—C10115.9 (3)
N1—C1—C2—O3−0.1 (5)N2—C1—N1—C8−0.2 (5)
N2—C1—C2—O3−179.9 (3)C2—C1—N1—C8180.0 (3)
N1—C1—C2—C3−178.9 (3)N2—C1—N1—Cu1−175.7 (3)
N2—C1—C2—C31.2 (5)C2—C1—N1—Cu14.4 (4)
O3—C2—C3—C4179.3 (3)C7—C8—N1—C1−1.7 (5)
C1—C2—C3—C4−2.1 (5)C9—C8—N1—C1177.1 (3)
C2—C3—C4—C51.3 (6)C7—C8—N1—Cu1172.7 (3)
C3—C4—C5—N20.4 (6)C9—C8—N1—Cu1−8.5 (5)
O1—C6—C7—C8177.8 (4)O3—Cu1—N1—C1−5.3 (2)
N2—C6—C7—C8−3.3 (5)O3i—Cu1—N1—C1−2.7 (4)
O1—C6—C7—C10−0.8 (6)O5—Cu1—N1—C1−109.3 (2)
N2—C6—C7—C10178.0 (3)Cl1—Cu1—N1—C1144.7 (2)
C6—C7—C8—N13.5 (5)Cl1—Cu1—N1—C1144.7 (2)
C10—C7—C8—N1−177.9 (3)O3—Cu1—N1—C8−180.0 (3)
C6—C7—C8—C9−175.2 (3)O3i—Cu1—N1—C8−177.5 (3)
C10—C7—C8—C93.4 (5)O5—Cu1—N1—C876.0 (3)
C8—C7—C10—C11−101.0 (4)Cl1—Cu1—N1—C8−30.0 (3)
C6—C7—C10—C1177.6 (4)Cl1—Cu1—N1—C8−30.0 (3)
C7—C10—C11—O2173.1 (3)N1—C1—N2—C5−179.5 (3)
C3—C2—O3—Cu1174.0 (3)C2—C1—N2—C50.4 (5)
C1—C2—O3—Cu1−4.7 (4)N1—C1—N2—C60.1 (5)
C3—C2—O3—Cu1i3.6 (6)C2—C1—N2—C6180.0 (3)
C1—C2—O3—Cu1i−175.1 (2)C4—C5—N2—C1−1.2 (5)
O3i—Cu1—O3—C2−173.4 (3)C4—C5—N2—C6179.2 (3)
N1—Cu1—O3—C25.6 (2)O1—C6—N2—C1−179.5 (3)
O5—Cu1—O3—C2100.7 (2)C7—C6—N2—C11.6 (5)
Cl1—Cu1—O3—C2−99.4 (3)O1—C6—N2—C50.1 (5)
Cl1—Cu1—O3—C2−99.4 (3)C7—C6—N2—C5−178.8 (3)
O3i—Cu1—O3—Cu1i0.0O3—Cu1—Cl1—Cl10.0 (5)
N1—Cu1—O3—Cu1i178.93 (14)O3i—Cu1—Cl1—Cl10.0 (5)
O5—Cu1—O3—Cu1i−85.97 (13)N1—Cu1—Cl1—Cl10.0 (5)
Cl1—Cu1—O3—Cu1i74.01 (18)O5—Cu1—Cl1—Cl10.0 (5)
Cl1—Cu1—O3—Cu1i74.01 (18)

Symmetry codes: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5C···O2ii0.822.132.742 (4)131.
O5—H5D···O1iii0.962.112.788 (4)127.
O2—H2A···Cl1iv0.75 (6)2.37 (6)3.078 (4)158 (6)
C9—H9A···Cl10.962.493.275 (4)139.
C3—H3A···Cl1i0.932.723.387 (4)130.

Symmetry codes: (ii) −x+1, −y+2, −z+2; (iii) x−1, y, z; (iv) x+1/2, −y+3/2, z+1/2; (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2256).

References

  • Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun.359, 1390–1394.
  • Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y., Jiang, X.-D. & Li, X.-B. (2008). Acta Cryst. E64, m801. [PMC free article] [PubMed]
  • Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography