PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1893.
Published online 2008 September 6. doi:  10.1107/S1600536808028146
PMCID: PMC2959474

4-Amino-3,5-dimethyl-4H1-,2,4-triazole–water (2/3)

Abstract

The asymmetric unit of the title compound, 2C4H8N4·3H2O, contains two crystallographically independent 4-amino-3,5-dimethyl-1,2,4-triazole mol­ecules and three water mol­ecules. The structure exhibits N—H(...)O, O—H(...)N and O—H(...)O hydrogen bonds.

Related literature

For related structures, see: Wang et al. (2006 [triangle]); Zachara et al. 2004 [triangle]). For related literature, see: Beckmann & Brooker (2003 [triangle]); Bentiss et al. (1999 [triangle]); Collin et al. (2003 [triangle]); Curtis (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1893-scheme1.jpg

Experimental

Crystal data

  • 2C4H8N4·3H2O
  • M r = 278.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1893-efi1.jpg
  • a = 7.194 (4) Å
  • b = 8.680 (4) Å
  • c = 13.592 (7) Å
  • α = 72.332 (8)°
  • β = 84.993 (8)°
  • γ = 68.936 (7)°
  • V = 754.5 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.981, T max = 0.984
  • 5166 measured reflections
  • 2904 independent reflections
  • 2447 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.137
  • S = 1.03
  • 2904 reflections
  • 213 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028146/bt2782sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028146/bt2782Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

supplementary crystallographic information

Comment

The derivatives of 4-amino-1,2,4-triazoles have considerable importance in medicinal chemistry, agricultural and industrial chemistry (Bentiss et al. 1999; Collin et al. 2003; Curtis et al. 2004). They have also been used as multidentate ligands in coordination chemistry (Beckmann et al. 2003). Here, we report a hydrated 4-amino-1,2,4-triazole (mta)2.3H2O (mta = 4-amino-3,5-dimethyl-1,2,4-triazole).

The asymmetric unit of the title compound contains two crystallographically independent mta molecules and three water molecules. The C═N—N—C fragments of the tetrazine rings have the C═N distances of 1.299 (2), 1.300 (2) and 1.304 (2) Å, and the N—N distances of 1.392 (2) and 1.389 (2) Å. All other C—N distances are between 1.352 (2) and 1.362 (2) Å, which are considered to have part double-bond character. In the crystalline state, the mta and crystal water molecules are linked together by N—H···O, O—H···N and O—H···O hydrogen bonding.

Experimental

To a solution of mta (mta = 4-amino-3,5-dimethyl-1,2,4-triazole) (0.0228 g, 0.2 mmol) in CH3OH (5 ml), an aqueous solution (5 ml) of MnSO4.H2O (0.0169 g, 0.1 mmol) was added. The mixture was stirred for half an hour and filtered. The filtrate was allowed to evaporate slowly at room temperature. After several days, colorless block crystals were obtained in 5% yield (0.0007 g) based on mta.

Refinement

H atoms bonded to O and N atoms were located in a difference map and freely refined. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.96 Å and with Uiso(H) = 1.5Uiso(C).

Figures

Fig. 1.
The asymmetric unit of the title compound with 30% thermal ellipsoids.
Fig. 2.
The three-dimensional supramolecular network of the title compound. The H atoms bonded to C atoms are omitted for clarity.

Crystal data

2C4H8N4·3H2OZ = 2
Mr = 278.34F(000) = 300
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.194 (4) ÅCell parameters from 785 reflections
b = 8.680 (4) Åθ = 2.4–28.0°
c = 13.592 (7) ŵ = 0.10 mm1
α = 72.332 (8)°T = 293 K
β = 84.993 (8)°Block, colourless
γ = 68.936 (7)°0.20 × 0.18 × 0.17 mm
V = 754.5 (6) Å3

Data collection

Bruker APEX CCD diffractometer2904 independent reflections
Radiation source: fine-focus sealed tube2447 reflections with I > 2σ(I)
graphiteRint = 0.014
[var phi] and ω scanθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −8→8
Tmin = 0.981, Tmax = 0.984k = −10→10
5166 measured reflectionsl = −16→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137w = 1/[σ2(Fo2) + (0.0782P)2 + 0.0952P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2904 reflectionsΔρmax = 0.27 e Å3
213 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.151 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2307 (2)0.21698 (19)0.03818 (12)0.0464 (4)
C20.2155 (3)0.3435 (2)0.09351 (15)0.0675 (5)
H2A0.21950.44870.04480.101*
H2B0.32490.29730.14220.101*
H2C0.09220.36660.12950.101*
C30.2508 (2)−0.02273 (19)0.01050 (12)0.0450 (4)
C40.2584 (3)−0.2021 (2)0.02881 (14)0.0574 (4)
H4A0.2743−0.2287−0.03570.086*
H4B0.1369−0.21340.05960.086*
H4C0.3691−0.28050.07440.086*
C50.2491 (2)0.3310 (2)−0.54342 (13)0.0518 (4)
C60.2507 (4)0.2018 (3)−0.59340 (17)0.0790 (6)
H6A0.26330.0947−0.54160.119*
H6B0.36120.1843−0.63890.119*
H6C0.12860.2421−0.63240.119*
C70.2362 (2)0.5735 (2)−0.52294 (12)0.0500 (4)
C80.2197 (3)0.7564 (2)−0.54624 (15)0.0691 (5)
H8A0.22590.7821−0.48300.104*
H8B0.09510.8304−0.58170.104*
H8C0.32740.7752−0.58920.104*
N10.2638 (2)0.08533 (18)−0.07827 (10)0.0528 (4)
N20.2508 (2)0.23853 (17)−0.06052 (10)0.0533 (4)
N30.22893 (18)0.05496 (15)0.08561 (9)0.0433 (3)
N40.2136 (3)−0.02566 (19)0.19138 (10)0.0543 (4)
H4D0.100 (3)0.047 (3)0.2139 (15)0.071 (6)*
H4E0.320 (3)−0.030 (3)0.2220 (15)0.071 (6)*
N50.2546 (2)0.46293 (18)−0.43183 (10)0.0568 (4)
N60.2637 (2)0.30785 (18)−0.44498 (11)0.0579 (4)
N70.2326 (2)0.49581 (17)−0.59485 (9)0.0511 (4)
N80.2096 (4)0.5651 (3)−0.70320 (12)0.0790 (6)
H8D0.105 (4)0.659 (4)−0.710 (2)0.109 (10)*
H8E0.325 (5)0.589 (4)−0.726 (2)0.119 (10)*
O1W−0.1595 (3)0.1723 (3)0.26863 (18)0.1022 (7)
H1WA−0.219 (5)0.280 (4)0.254 (2)0.132 (12)*
H1WB−0.248 (5)0.128 (4)0.254 (2)0.131 (11)*
O2W0.3524 (2)0.47375 (18)−0.23848 (12)0.0706 (4)
H2WA0.308 (4)0.412 (3)−0.186 (2)0.090 (7)*
H2WB0.308 (4)0.466 (3)−0.296 (2)0.101 (8)*
O3W0.3962 (2)0.02300 (16)−0.26616 (11)0.0610 (4)
H3WA0.341 (3)0.055 (3)−0.2121 (18)0.079 (6)*
H3WB0.349 (4)0.114 (3)−0.321 (2)0.093 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0471 (8)0.0429 (8)0.0438 (8)−0.0139 (6)−0.0002 (6)−0.0069 (6)
C20.0849 (13)0.0529 (10)0.0645 (11)−0.0241 (9)−0.0015 (10)−0.0161 (9)
C30.0393 (7)0.0485 (8)0.0455 (8)−0.0143 (6)0.0017 (6)−0.0128 (7)
C40.0574 (10)0.0543 (10)0.0636 (11)−0.0213 (8)0.0020 (8)−0.0198 (8)
C50.0514 (9)0.0550 (9)0.0478 (9)−0.0184 (7)0.0075 (7)−0.0152 (7)
C60.0942 (15)0.0765 (13)0.0778 (14)−0.0334 (11)0.0145 (11)−0.0378 (11)
C70.0513 (9)0.0539 (9)0.0444 (9)−0.0212 (7)0.0050 (7)−0.0115 (7)
C80.0833 (13)0.0610 (11)0.0660 (12)−0.0345 (10)0.0060 (10)−0.0129 (9)
N10.0571 (8)0.0584 (8)0.0431 (7)−0.0227 (6)0.0055 (6)−0.0134 (6)
N20.0589 (8)0.0512 (8)0.0455 (8)−0.0221 (6)0.0029 (6)−0.0053 (6)
N30.0445 (7)0.0430 (7)0.0374 (7)−0.0144 (5)0.0013 (5)−0.0060 (5)
N40.0632 (9)0.0543 (8)0.0378 (7)−0.0206 (7)0.0038 (7)−0.0034 (6)
N50.0697 (9)0.0578 (8)0.0427 (8)−0.0249 (7)0.0031 (6)−0.0119 (6)
N60.0709 (9)0.0516 (8)0.0467 (8)−0.0213 (7)0.0030 (6)−0.0086 (6)
N70.0565 (8)0.0584 (8)0.0368 (7)−0.0242 (6)0.0045 (6)−0.0080 (6)
N80.1082 (16)0.0910 (14)0.0374 (8)−0.0448 (13)0.0018 (9)−0.0062 (8)
O1W0.0737 (10)0.0831 (12)0.170 (2)−0.0312 (9)0.0195 (10)−0.0655 (13)
O2W0.1040 (11)0.0668 (9)0.0514 (8)−0.0482 (8)−0.0005 (7)−0.0090 (6)
O3W0.0781 (9)0.0496 (7)0.0488 (7)−0.0161 (6)0.0067 (6)−0.0143 (6)

Geometric parameters (Å, °)

C1—N21.300 (2)C7—N71.352 (2)
C1—N31.362 (2)C7—C81.483 (2)
C1—C21.478 (2)C8—H8A0.9600
C2—H2A0.9600C8—H8B0.9600
C2—H2B0.9600C8—H8C0.9600
C2—H2C0.9600N1—N21.391 (2)
C3—N11.304 (2)N3—N41.4091 (18)
C3—N31.355 (2)N4—H4D0.93 (2)
C3—C41.482 (2)N4—H4E0.88 (2)
C4—H4A0.9600N5—N61.389 (2)
C4—H4B0.9600N7—N81.411 (2)
C4—H4C0.9600N8—H8D0.88 (3)
C5—N61.299 (2)N8—H8E0.93 (3)
C5—N71.354 (2)O1W—H1WA0.84 (3)
C5—C61.474 (3)O1W—H1WB0.92 (3)
C6—H6A0.9600O2W—H2WA0.87 (3)
C6—H6B0.9600O2W—H2WB0.90 (3)
C6—H6C0.9600O3W—H3WA0.88 (2)
C7—N51.299 (2)O3W—H3WB0.89 (3)
N2—C1—N3109.30 (14)N5—C7—C8126.38 (16)
N2—C1—C2126.85 (15)N7—C7—C8124.62 (15)
N3—C1—C2123.85 (15)C7—C8—H8A109.5
C1—C2—H2A109.5C7—C8—H8B109.5
C1—C2—H2B109.5H8A—C8—H8B109.5
H2A—C2—H2B109.5C7—C8—H8C109.5
C1—C2—H2C109.5H8A—C8—H8C109.5
H2A—C2—H2C109.5H8B—C8—H8C109.5
H2B—C2—H2C109.5C3—N1—N2107.78 (13)
N1—C3—N3109.02 (14)C1—N2—N1107.36 (12)
N1—C3—C4126.61 (15)C3—N3—C1106.55 (13)
N3—C3—C4124.37 (14)C3—N3—N4124.23 (13)
C3—C4—H4A109.5C1—N3—N4129.20 (13)
C3—C4—H4B109.5N3—N4—H4D106.6 (12)
H4A—C4—H4B109.5N3—N4—H4E105.8 (13)
C3—C4—H4C109.5H4D—N4—H4E109.1 (17)
H4A—C4—H4C109.5C7—N5—N6107.56 (14)
H4B—C4—H4C109.5C5—N6—N5107.64 (13)
N6—C5—N7108.89 (15)C7—N7—C5106.91 (14)
N6—C5—C6126.70 (17)C7—N7—N8129.47 (15)
N7—C5—C6124.41 (16)C5—N7—N8123.59 (15)
C5—C6—H6A109.5N7—N8—H8D102.0 (18)
C5—C6—H6B109.5N7—N8—H8E105.6 (17)
H6A—C6—H6B109.5H8D—N8—H8E112 (3)
C5—C6—H6C109.5H1WA—O1W—H1WB106 (3)
H6A—C6—H6C109.5H2WA—O2W—H2WB107 (2)
H6B—C6—H6C109.5H3WA—O3W—H3WB107 (2)
N5—C7—N7109.00 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4D···O1W0.93 (2)2.00 (2)2.924 (3)170.9 (18)
N4—H4E···O3Wi0.88 (2)2.21 (2)3.078 (3)168.3 (18)
N8—H8E···O2Wii0.93 (3)2.23 (3)3.104 (3)156 (2)
O1W—H1WA···O2Wiii0.84 (3)1.95 (3)2.793 (3)173 (3)
O1W—H1WB···O3Wiv0.92 (3)1.93 (3)2.810 (2)160 (3)
O2W—H2WA···N20.87 (3)2.02 (3)2.885 (2)171 (2)
O2W—H2WB···N50.90 (3)1.93 (3)2.816 (2)168 (2)
O3W—H3WA···N10.88 (2)1.92 (2)2.787 (2)168 (2)
O3W—H3WB···N60.89 (3)1.93 (3)2.827 (2)176 (2)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z−1; (iii) −x, −y+1, −z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2782).

References

  • Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev.245, 17–29.
  • Bentiss, F., Lagrenee, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci.41, 789–803.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett.13, 2601–2605. [PubMed]
  • Curtis, A. D. M. (2004). Sci. Synth., 13, 603–605.
  • Sheldrick, G. M. (2000). SADABS, University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, P., Ma, J. P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2791–o2792.
  • Zachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57–o59. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography