PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1246.
Published online 2008 September 6. doi:  10.1107/S1600536808027979
PMCID: PMC2959473

Tris(ethyl­enediamine)zinc(II) dichloride monohydrate

Abstract

The asymmetric unit of the title compound, [Zn(C2H8N2)3]Cl2·H2O, contains a discrete [Zn(C2H8N2)3]2+ cation with a distorted octa­hedral geometry around Zn, two uncoordinated chloride ions and one water mol­ecule. The crystal structure exhibits N—H(...)O, N—H(...)Cl and O—H(...)O hydrogen bonds.

Related literature

For related structures, see: Bernhardt & Riley (2003 [triangle]); Cernak et al. (1984 [triangle]); Emsley et al. (1989 [triangle]); Muralikrishna et al. (1983 [triangle]); Nesterova et al. (2006 [triangle]); Wu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1246-scheme1.jpg

Experimental

Crystal data

  • [Zn(C2H8N2)3]Cl2·H2O
  • M r = 334.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1246-efi1.jpg
  • a = 8.8165 (10) Å
  • b = 11.9379 (14) Å
  • c = 14.4043 (17) Å
  • β = 92.804 (2)°
  • V = 1514.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.97 mm−1
  • T = 293 (2) K
  • 0.25 × 0.22 × 0.16 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.639, T max = 0.744
  • 11550 measured reflections
  • 2975 independent reflections
  • 2511 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.085
  • S = 1.10
  • 2975 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027979/bt2779sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027979/bt2779Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

supplementary crystallographic information

Comment

The preparation of complexes including different stereoisomers is a fascinating and promising means. There are many complexes including [Zn(en)3]2+ cation (en = ethylenediamine), which have been reported, due that [Zn(en)3]2+ cation has two simple and intuitive stereoisomers (Bernhardt et al., 2003; Cernak et al., 1984; Emsley et al., 1989; Muralikrishna et al., 1983; Nesterova et al., 2006; Wu et al., 2001). Different from the similar compound [Zn(en)3]Cl2.2H2O (Muralikrishna et al., 1983; Wu et al., 2001), here, we report a salt [Zn(en)3]Cl2.H2O. In the asymmetric unit of the salt, there are only one crystal water molecule.

The asymmetric unit of the title salt, [Zn(en)3]Cl2.H2O, contains a discrete [Zn(en)3]2+ cation, two uncoordinated chloride ions and one water molecule. The Zn(II) ion displays a distorted octahedral geometry, being surrounded by three en ligands. The Zn···N distances are between 2.159 (2) and 2.220 (2) Å. Each en acts as a chelating bidentate ligand. In crystal, the [Zn(en)3]2+ cations, chloride ions and the crystal water are linked together by N—H···O, N—H···Cl and O—H···Cl hydrogen bonds (Table 2).

Experimental

To a solution of ZnCl2.2H2O (0.172 g, 1 mmol) in CH3OH (5 ml), an aqueous solution (5 ml) of bib (bib = 1,3-bis(4,5-Dihydro-1H-imidazol-2-yl)benzene) (0.214 g, 1 mmol) was added. After the mixture was stirred for half an hour, a white precipitate formed. 3 ml en was added to the mixture and the precipitate disappeared. Then the mixture was stirred for an hour and filtered. The filtrate was allowed to evaporate slowly at room temperature. After 3 weeks, colorless block shaped crystals were obtained in 40% yield (0.034 g) based on Zn(II).

Refinement

H atoms were located in a difference map, but refined using a riding model with N—H = 0.90, O—H = 0.85 Å and C—H = 0.97 Å and with Uiso(H) = 1.2 Uiso(C,N,O).

Figures

Fig. 1.
The asymmetric unit of the title compound with 30% displacement ellipsoids.
Fig. 2.
Partial packing diagram. The H atoms bonded to C atoms are omitted for clarity.

Crystal data

[Zn(C2H8N2)3]Cl2·H2OF(000) = 704
Mr = 334.60Dx = 1.468 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 783 reflections
a = 8.8165 (10) Åθ = 2.5–28.0°
b = 11.9379 (14) ŵ = 1.97 mm1
c = 14.4043 (17) ÅT = 293 K
β = 92.804 (2)°Block, colorless
V = 1514.2 (3) Å30.25 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer2975 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −10→10
Tmin = 0.639, Tmax = 0.744k = −14→14
11550 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0384P)2 + 0.5868P] where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.24154 (3)0.55616 (3)0.20878 (2)0.03553 (12)
Cl10.31636 (9)0.23340 (7)0.36125 (6)0.0567 (2)
Cl20.20561 (8)0.87644 (7)0.38972 (5)0.0505 (2)
C10.3870 (3)0.3760 (3)0.1009 (2)0.0555 (8)
H1A0.44520.34500.15380.067*
H1B0.42970.34800.04460.067*
C20.2244 (4)0.3402 (3)0.1041 (2)0.0540 (8)
H2A0.16810.36590.04860.065*
H2B0.21860.25910.10580.065*
C30.1673 (4)0.5327 (3)0.4086 (2)0.0507 (8)
H3A0.14310.45360.40340.061*
H3B0.12640.56100.46530.061*
C40.3359 (4)0.5484 (3)0.4120 (2)0.0557 (9)
H4A0.36010.62730.41920.067*
H4B0.38160.50850.46490.067*
C50.0887 (4)0.7490 (3)0.1124 (2)0.0565 (9)
H5A0.03910.77830.16590.068*
H5B0.04110.78240.05690.068*
C60.2557 (4)0.7787 (3)0.1193 (2)0.0508 (8)
H6A0.30400.75350.06400.061*
H6B0.26760.85940.12380.061*
N10.3960 (3)0.4984 (2)0.10299 (17)0.0465 (6)
H1C0.48850.53000.11050.070*
H1D0.36840.52620.04660.070*
N20.1568 (3)0.3873 (2)0.18697 (16)0.0419 (6)
H2C0.17780.33830.23330.063*
H2D0.05460.38540.18390.063*
N30.0993 (3)0.5935 (2)0.32796 (16)0.0443 (6)
H3C−0.00100.57900.32320.067*
H3D0.10790.66750.33890.067*
N40.3974 (3)0.5059 (2)0.32603 (16)0.0445 (6)
H4C0.49470.52760.32230.067*
H4D0.38720.43120.32040.067*
N50.0720 (3)0.6272 (2)0.10862 (16)0.0456 (6)
H5C−0.02180.60390.12140.068*
H5D0.09330.60750.05040.068*
N60.3279 (3)0.7250 (2)0.20173 (16)0.0444 (6)
H6C0.42880.73420.19820.067*
H6D0.30540.76780.25060.067*
O1W0.2475 (3)0.0426 (2)0.21973 (17)0.0692 (7)
H1WA0.26300.10020.25360.104*
H1WB0.2361−0.00200.26490.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03116 (18)0.0416 (2)0.03389 (18)−0.00316 (13)0.00251 (12)0.00012 (13)
Cl10.0520 (5)0.0563 (5)0.0622 (5)0.0042 (4)0.0079 (4)0.0108 (4)
Cl20.0449 (4)0.0597 (5)0.0467 (4)0.0018 (3)0.0009 (3)−0.0014 (4)
C10.0461 (18)0.073 (2)0.0480 (18)0.0078 (16)0.0089 (14)−0.0111 (17)
C20.0550 (19)0.056 (2)0.0503 (19)−0.0051 (16)0.0010 (15)−0.0111 (16)
C30.0565 (19)0.061 (2)0.0348 (15)0.0002 (16)0.0076 (14)−0.0003 (14)
C40.0529 (19)0.073 (2)0.0403 (17)0.0025 (16)−0.0075 (14)−0.0069 (16)
C50.056 (2)0.060 (2)0.0534 (19)0.0148 (16)0.0015 (15)0.0061 (16)
C60.067 (2)0.0420 (18)0.0440 (17)−0.0034 (15)0.0052 (15)0.0025 (14)
N10.0359 (13)0.0597 (17)0.0444 (14)−0.0059 (12)0.0072 (10)−0.0020 (12)
N20.0349 (12)0.0484 (15)0.0425 (13)−0.0093 (11)0.0032 (10)−0.0006 (11)
N30.0368 (13)0.0514 (15)0.0453 (14)−0.0006 (11)0.0072 (10)−0.0015 (12)
N40.0354 (13)0.0527 (16)0.0451 (14)−0.0013 (11)−0.0023 (10)−0.0031 (12)
N50.0357 (13)0.0582 (17)0.0426 (13)−0.0029 (11)−0.0004 (10)0.0052 (12)
N60.0407 (13)0.0467 (15)0.0461 (14)−0.0083 (11)0.0042 (11)−0.0033 (12)
O1W0.0747 (18)0.0651 (17)0.0678 (16)0.0051 (12)0.0032 (14)0.0022 (12)

Geometric parameters (Å, °)

Zn1—N62.158 (2)C5—C61.513 (5)
Zn1—N22.167 (2)C5—H5A0.9700
Zn1—N52.196 (2)C5—H5B0.9700
Zn1—N12.203 (2)C6—N61.467 (4)
Zn1—N42.208 (2)C6—H6A0.9700
Zn1—N32.220 (2)C6—H6B0.9700
C1—N11.464 (4)N1—H1C0.9000
C1—C21.498 (4)N1—H1D0.9000
C1—H1A0.9700N2—H2C0.9000
C1—H1B0.9700N2—H2D0.9000
C2—N21.472 (4)N3—H3C0.9000
C2—H2A0.9700N3—H3D0.9000
C2—H2B0.9700N4—H4C0.9000
C3—N31.472 (4)N4—H4D0.9000
C3—C41.496 (4)N5—H5C0.9000
C3—H3A0.9700N5—H5D0.9000
C3—H3B0.9700N6—H6C0.9000
C4—N41.466 (4)N6—H6D0.9000
C4—H4A0.9700O1W—H1WA0.8500
C4—H4B0.9700O1W—H1WB0.8503
C5—N51.463 (4)
N6—Zn1—N2168.95 (9)H5A—C5—H5B108.3
N6—Zn1—N580.73 (9)N6—C6—C5109.4 (2)
N2—Zn1—N592.59 (9)N6—C6—H6A109.8
N6—Zn1—N191.62 (9)C5—C6—H6A109.8
N2—Zn1—N180.16 (9)N6—C6—H6B109.8
N5—Zn1—N195.18 (9)C5—C6—H6B109.8
N6—Zn1—N494.68 (9)H6A—C6—H6B108.2
N2—Zn1—N493.19 (9)C1—N1—Zn1106.97 (18)
N5—Zn1—N4170.26 (9)C1—N1—H1C117.9
N1—Zn1—N493.52 (9)Zn1—N1—H1C111.9
N6—Zn1—N393.60 (9)C1—N1—H1D109.7
N2—Zn1—N395.45 (9)Zn1—N1—H1D111.1
N5—Zn1—N392.20 (9)H1C—N1—H1D99.1
N1—Zn1—N3171.56 (9)C2—N2—Zn1108.81 (18)
N4—Zn1—N379.46 (9)C2—N2—H2C106.0
N1—C1—C2109.6 (3)Zn1—N2—H2C116.1
N1—C1—H1A109.8C2—N2—H2D113.2
C2—C1—H1A109.8Zn1—N2—H2D111.6
N1—C1—H1B109.8H2C—N2—H2D100.9
C2—C1—H1B109.8C3—N3—Zn1106.68 (18)
H1A—C1—H1B108.2C3—N3—H3C109.1
N2—C2—C1110.0 (2)Zn1—N3—H3C119.5
N2—C2—H2A109.7C3—N3—H3D108.6
C1—C2—H2A109.7Zn1—N3—H3D106.6
N2—C2—H2B109.7H3C—N3—H3D106.0
C1—C2—H2B109.7C4—N4—Zn1108.07 (17)
H2A—C2—H2B108.2C4—N4—H4C110.2
N3—C3—C4109.3 (3)Zn1—N4—H4C115.8
N3—C3—H3A109.8C4—N4—H4D112.3
C4—C3—H3A109.8Zn1—N4—H4D98.3
N3—C3—H3B109.8H4C—N4—H4D111.7
C4—C3—H3B109.8C5—N5—Zn1107.18 (17)
H3A—C3—H3B108.3C5—N5—H5C113.0
N4—C4—C3109.7 (2)Zn1—N5—H5C110.4
N4—C4—H4A109.7C5—N5—H5D105.6
C3—C4—H4A109.7Zn1—N5—H5D110.2
N4—C4—H4B109.7H5C—N5—H5D110.2
C3—C4—H4B109.7C6—N6—Zn1107.84 (18)
H4A—C4—H4B108.2C6—N6—H6C107.0
N5—C5—C6109.4 (2)Zn1—N6—H6C118.0
N5—C5—H5A109.8C6—N6—H6D106.3
C6—C5—H5A109.8Zn1—N6—H6D113.7
N5—C5—H5B109.8H6C—N6—H6D103.4
C6—C5—H5B109.8H1WA—O1W—H1WB95.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl2i0.902.863.739 (3)165.
N2—H2C···Cl10.902.503.363 (3)162.
N2—H2D···Cl2ii0.902.483.332 (2)158.
N3—H3C···O1Wiii0.902.273.159 (3)169.
N3—H3D···Cl20.902.733.605 (3)165.
N4—H4C···O1Wiv0.902.393.260 (3)164.
N4—H4D···Cl10.902.523.375 (3)159.
N5—H5D···Cl2i0.902.573.420 (3)158.
N6—H6C···Cl1iv0.902.443.309 (3)161.
N6—H6D···Cl20.902.583.471 (3)172.
O1W—H1WA···Cl10.852.253.097 (3)171.
O1W—H1WB···Cl2v0.852.343.187 (3)180.

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2779).

References

  • Bernhardt, P. V. & Riley, M. J. (2003). Aust. J. Chem.56, 287–291.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cernak, J., Chomic, J., Dunaj-Jurco, M. & Kappenstein, C. (1984). Inorg. Chim. Acta, 85, 219–223.
  • Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1989). Chem. Commun. pp. 738–739.
  • Muralikrishna, C., Mahadevan, C., Sastry, S., Seshasayee, M. & Subramanian, S. (1983). Acta Cryst. C39, 1630–1632.
  • Nesterova, O. V., Petrusenko, S. R., Dyakonenko, V. V., Shishkin, O. V. & Linert, W. (2006). Acta Cryst. C62, m281–m283. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, D.-M., Lin, X., Lu, C.-Z. & Zhuang, H.-H. (2001). Chin. J. Struct. Chem.20, 409–412.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography