PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1348.
Published online 2008 September 30. doi:  10.1107/S1600536808031036
PMCID: PMC2959472

Poly[aqua­[μ3-N′-(carboxy­meth­yl)ethyl­ene­diamine-N,N,N′-triacetato]samarium(III)]

Abstract

In the title coordination polymer, [Sm(C10H13N2O8)(H2O)]n, each samarium(III) centre is nine-coordinated by six O and two N atoms from three N′-(carboxy­meth­yl)ethyl­enediamine-N,N,N′-triacetate ligands and one O atom of a water mol­ecule, forming polymeric chains running parallel to the a axis. The packing is governed by inter­molecular O—H(...)O hydrogen-bonding inter­actions.

Related literature

For the corresponding neodymium polymeric complex, see: Huang et al. (2008 [triangle]). For related literature, see: Dakanali et al. (2003 [triangle]); Kitaura et al. (2002 [triangle]); Rowsell et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1348-scheme1.jpg

Experimental

Crystal data

  • [Sm(C10H13N2O8)(H2O)]
  • M r = 457.60
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1348-efi1.jpg
  • a = 6.6506 (7) Å
  • b = 14.7051 (16) Å
  • c = 25.967 (3) Å
  • V = 2539.5 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.68 mm−1
  • T = 296 (2) K
  • 0.23 × 0.19 × 0.18 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.355, T max = 0.433
  • 13066 measured reflections
  • 2637 independent reflections
  • 2289 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.064
  • S = 1.03
  • 2637 reflections
  • 206 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.94 e Å−3
  • Δρmin = −1.21 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808031036/rz2243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031036/rz2243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Hezhou University for supporting this work.

supplementary crystallographic information

Comment

Research on metal–organic frameworks has been expanding rapidly, due to their interesting structural motifs (Dakanali et al., 2003) and other potential applications (Kitaura et al., 2002; Rowsell et al., 2004) in molecular-based materials. Ethylenediaminetetraacetic acid (H4edta) is a good example of a bridging ligand that can link metal centres into extended networks. Herein, we report a new samarium complex obtained by the hydrothermal treatment of Sm2O3 and H4edta in the presence of HClO4.

The samarium(III) metal centre is nine-coordinated by six oxygen and two nitrogen atoms from three different N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato ligands and one water molecule (Fig. 1) to form a polymeric chain running parallel to the crystallographic a axis (Fig. 2). The Sm···Sm separations between adjacent metal centres are 4.2461 (6) and 6.6506 (8) Å. The polymeric chains self-assemble via intermolecular O—H···O hydrogen bonding interactions (Table 1) to form a three-dimensional supramolecular network. The title compound is isostructural with the corresponding neodymium polymeric complex (Huang et al., 2008).

Experimental

A mixture of Sm2O3 (0.5 mmol), ethylenediaminetetraacetic acid (H4edta) (0.5 mmol), HClO4 (0.2 mmol) and H2O (10 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.82 Å and H···H = 1.20 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.97 Å and O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C, O).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids. Symmetry codes: (i: 1+x, y, z; ii: 2-x, 1-y, 1-z).
Fig. 2.
The one-dimensional polymeric chain of the title compound.

Crystal data

[Sm(C10H13N2O8)(H2O)]F(000) = 1784
Mr = 457.60Dx = 2.394 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3600 reflections
a = 6.6506 (7) Åθ = 1.7–28.0°
b = 14.7051 (16) ŵ = 4.68 mm1
c = 25.967 (3) ÅT = 296 K
V = 2539.5 (5) Å3Block, colourless
Z = 80.23 × 0.19 × 0.18 mm

Data collection

Bruker APEXII area-detector diffractometer2637 independent reflections
Radiation source: fine-focus sealed tube2289 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scanθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→5
Tmin = 0.355, Tmax = 0.433k = −16→18
13066 measured reflectionsl = −32→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0288P)2 + 6.2721P] where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max = 0.002
206 parametersΔρmax = 0.94 e Å3
3 restraintsΔρmin = −1.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sm11.07590 (3)0.506856 (12)0.420681 (7)0.01387 (8)
C11.2133 (6)0.3523 (3)0.33453 (14)0.0168 (8)
C21.0904 (6)0.2870 (3)0.36651 (15)0.0186 (8)
H2A1.01700.24670.34370.022*
H2B1.18070.25000.38700.022*
C30.7461 (6)0.3440 (3)0.37554 (15)0.0197 (8)
H3A0.65430.37390.39910.024*
H3B0.69180.28430.36780.024*
C40.7586 (6)0.3985 (3)0.32648 (14)0.0193 (8)
H4A0.85800.37130.30390.023*
H4B0.62970.39650.30900.023*
C50.9165 (6)0.5334 (3)0.29164 (15)0.0186 (8)
H5A0.81890.54860.26520.022*
H5B1.00970.48930.27740.022*
C61.0293 (6)0.6179 (3)0.30788 (15)0.0178 (8)
C70.6310 (6)0.5491 (3)0.34790 (15)0.0199 (9)
H7A0.51630.52050.33150.024*
H7B0.64670.60910.33290.024*
C80.5880 (6)0.5592 (3)0.40475 (15)0.0166 (8)
C90.9173 (6)0.2796 (3)0.44879 (15)0.0194 (9)
H9A1.02770.23690.45220.023*
H9B0.79420.24470.44580.023*
C100.9064 (6)0.3372 (3)0.49695 (15)0.0173 (8)
N10.9459 (5)0.3332 (2)0.40114 (12)0.0164 (7)
N20.8138 (5)0.4946 (2)0.33643 (12)0.0173 (7)
O11.2293 (4)0.43367 (18)0.34962 (10)0.0207 (6)
O21.2980 (5)0.32419 (18)0.29435 (10)0.0235 (7)
O31.0724 (4)0.63138 (19)0.35307 (11)0.0232 (7)
O41.0758 (5)0.6717 (2)0.27029 (11)0.0292 (7)
H41.11820.71990.28190.044*
O50.9074 (4)0.42346 (18)0.49227 (10)0.0203 (6)
O60.7369 (4)0.5605 (2)0.43483 (10)0.0233 (6)
O70.4107 (4)0.57144 (19)0.41872 (11)0.0211 (6)
O80.9000 (5)0.2985 (2)0.53938 (11)0.0294 (7)
O1W1.3250 (5)0.3977 (2)0.46232 (11)0.0271 (7)
H2W1.350 (8)0.3428 (10)0.4613 (15)0.041*
H1W1.348 (8)0.412 (3)0.4922 (7)0.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sm10.01036 (12)0.01782 (12)0.01343 (12)0.00028 (8)0.00067 (7)−0.00100 (8)
C10.0145 (19)0.021 (2)0.0153 (18)0.0028 (16)0.0001 (15)−0.0005 (15)
C20.019 (2)0.0179 (19)0.019 (2)0.0032 (17)0.0014 (16)0.0000 (16)
C30.016 (2)0.0196 (19)0.023 (2)−0.0039 (17)−0.0008 (18)−0.0007 (16)
C40.017 (2)0.022 (2)0.0197 (19)−0.0027 (16)−0.0040 (17)−0.0026 (15)
C50.019 (2)0.022 (2)0.0152 (19)−0.0017 (17)−0.0002 (16)−0.0008 (16)
C60.0142 (19)0.018 (2)0.021 (2)0.0000 (16)0.0007 (16)0.0010 (16)
C70.016 (2)0.026 (2)0.018 (2)0.0035 (17)0.0008 (16)0.0034 (17)
C80.014 (2)0.0157 (18)0.020 (2)−0.0015 (15)0.0019 (16)−0.0007 (15)
C90.025 (2)0.017 (2)0.016 (2)0.0001 (17)0.0005 (17)0.0022 (15)
C100.0102 (19)0.024 (2)0.0176 (19)−0.0010 (16)0.0031 (15)0.0005 (16)
N10.0181 (18)0.0169 (16)0.0143 (16)0.0004 (14)0.0019 (13)0.0000 (13)
N20.0138 (16)0.0193 (17)0.0187 (16)0.0011 (14)0.0008 (13)0.0005 (14)
O10.0174 (15)0.0206 (14)0.0242 (14)−0.0011 (12)0.0052 (12)−0.0055 (12)
O20.0319 (18)0.0201 (14)0.0186 (14)0.0006 (13)0.0078 (12)−0.0020 (12)
O30.0277 (17)0.0257 (16)0.0163 (14)−0.0039 (13)−0.0037 (12)0.0008 (12)
O40.046 (2)0.0227 (16)0.0190 (15)−0.0149 (15)0.0017 (14)0.0007 (12)
O50.0218 (16)0.0184 (14)0.0209 (15)−0.0051 (12)0.0034 (12)−0.0039 (11)
O60.0133 (14)0.0355 (17)0.0211 (14)0.0051 (13)−0.0039 (12)−0.0038 (12)
O70.0115 (14)0.0224 (15)0.0295 (16)−0.0004 (11)0.0016 (12)−0.0047 (12)
O80.0337 (19)0.0355 (18)0.0189 (15)0.0007 (15)0.0027 (13)0.0061 (13)
O1W0.0303 (18)0.0290 (17)0.0221 (16)0.0045 (15)−0.0043 (14)0.0029 (13)

Geometric parameters (Å, °)

Sm1—O12.367 (3)C5—C61.512 (5)
Sm1—O62.416 (3)C5—H5A0.9700
Sm1—O7i2.421 (3)C5—H5B0.9700
Sm1—O5ii2.484 (3)C6—O31.224 (5)
Sm1—O52.493 (3)C6—O41.294 (5)
Sm1—O32.537 (3)C7—N21.486 (5)
Sm1—O1W2.548 (3)C7—C81.511 (5)
Sm1—N12.744 (3)C7—H7A0.9700
Sm1—N22.803 (3)C7—H7B0.9700
C1—O21.256 (4)C8—O71.247 (5)
C1—O11.263 (5)C8—O61.261 (5)
C1—C21.510 (5)C9—N11.479 (5)
C2—N11.481 (5)C9—C101.512 (5)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—N11.494 (5)C10—O81.241 (5)
C3—C41.507 (5)C10—O51.274 (5)
C3—H3A0.9700O4—H40.8200
C3—H3B0.9700O5—Sm1ii2.484 (3)
C4—N21.483 (5)O7—Sm1iii2.421 (3)
C4—H4A0.9700O1W—H2W0.823 (10)
C4—H4B0.9700O1W—H1W0.820 (10)
C5—N21.464 (5)
O1—Sm1—O6131.98 (9)N2—C4—H4B109.2
O1—Sm1—O7i76.45 (9)C3—C4—H4B109.2
O6—Sm1—O7i137.16 (10)H4A—C4—H4B107.9
O1—Sm1—O5ii151.34 (10)N2—C5—C6109.3 (3)
O6—Sm1—O5ii76.64 (9)N2—C5—H5A109.8
O7i—Sm1—O5ii79.40 (9)C6—C5—H5A109.8
O1—Sm1—O5123.46 (9)N2—C5—H5B109.8
O6—Sm1—O568.14 (9)C6—C5—H5B109.8
O7i—Sm1—O5128.46 (9)H5A—C5—H5B108.3
O5ii—Sm1—O562.91 (10)O3—C6—O4124.6 (4)
O1—Sm1—O378.03 (9)O3—C6—C5121.1 (4)
O6—Sm1—O382.03 (9)O4—C6—C5114.2 (3)
O7i—Sm1—O373.18 (9)N2—C7—C8113.8 (3)
O5ii—Sm1—O3109.41 (9)N2—C7—H7A108.8
O5—Sm1—O3150.11 (9)C8—C7—H7A108.8
O1—Sm1—O1W76.36 (9)N2—C7—H7B108.8
O6—Sm1—O1W138.39 (10)C8—C7—H7B108.8
O7i—Sm1—O1W70.02 (10)H7A—C7—H7B107.7
O5ii—Sm1—O1W81.07 (10)O7—C8—O6124.1 (4)
O5—Sm1—O1W70.48 (10)O7—C8—C7118.5 (3)
O3—Sm1—O1W138.98 (10)O6—C8—C7117.2 (3)
O1—Sm1—N164.43 (9)N1—C9—C10113.6 (3)
O6—Sm1—N192.16 (10)N1—C9—H9A108.9
O7i—Sm1—N1130.62 (9)C10—C9—H9A108.9
O5ii—Sm1—N1124.49 (9)N1—C9—H9B108.9
O5—Sm1—N162.50 (9)C10—C9—H9B108.9
O3—Sm1—N1122.76 (9)H9A—C9—H9B107.7
O1W—Sm1—N172.34 (10)O8—C10—O5122.8 (4)
O1—Sm1—N268.30 (10)O8—C10—C9118.6 (4)
O6—Sm1—N263.86 (9)O5—C10—C9118.6 (3)
O7i—Sm1—N2125.50 (9)C9—N1—C2110.3 (3)
O5ii—Sm1—N2139.87 (9)C9—N1—C3108.3 (3)
O5—Sm1—N2105.71 (9)C2—N1—C3110.8 (3)
O3—Sm1—N260.04 (9)C9—N1—Sm1112.4 (2)
O1W—Sm1—N2134.02 (10)C2—N1—Sm1109.5 (2)
N1—Sm1—N266.42 (9)C3—N1—Sm1105.3 (2)
O2—C1—O1122.1 (4)C5—N2—C4110.4 (3)
O2—C1—C2119.3 (3)C5—N2—C7109.3 (3)
O1—C1—C2118.5 (3)C4—N2—C7110.2 (3)
N1—C2—C1113.2 (3)C5—N2—Sm1107.8 (2)
N1—C2—H2A108.9C4—N2—Sm1110.6 (2)
C1—C2—H2A108.9C7—N2—Sm1108.5 (2)
N1—C2—H2B108.9C1—O1—Sm1129.5 (2)
C1—C2—H2B108.9C6—O3—Sm1123.3 (3)
H2A—C2—H2B107.8C6—O4—H4109.5
N1—C3—C4112.6 (3)C10—O5—Sm1ii108.9 (2)
N1—C3—H3A109.1C10—O5—Sm1124.3 (2)
C4—C3—H3A109.1Sm1ii—O5—Sm1117.09 (10)
N1—C3—H3B109.1C8—O6—Sm1129.3 (2)
C4—C3—H3B109.1C8—O7—Sm1iii145.0 (3)
H3A—C3—H3B107.8Sm1—O1W—H2W137 (3)
N2—C4—C3111.9 (3)Sm1—O1W—H1W111 (3)
N2—C4—H4A109.2H2W—O1W—H1W104 (4)
C3—C4—H4A109.2

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O2iv0.821.662.474 (4)170.
O1W—H1W···O6ii0.82 (1)2.02 (2)2.771 (4)153.(2)
O1W—H2W···O8v0.82 (1)2.10 (2)2.928 (4)177.(2)

Symmetry codes: (iv) −x+5/2, y+1/2, z; (ii) −x+2, −y+1, −z+1; (v) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2243).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dakanali, M., Kefalas, E. T., Raptopoulou, C. P., Terzis, A., Mavromoustakos, T. & Salifoglou, A. (2003). Inorg. Chem.42, 2531–2537. [PubMed]
  • Huang, X.-H., Xu, X.-H., Pan, W.-B. & Zeng, R.-H. (2008). Acta Cryst.E64, m1194. [PMC free article] [PubMed]
  • Kitaura, R., Fujimoto, K., Noro, S., Kondo, M. & Kitagawa, S. (2002). Angew. Chem. Int. Ed.41, 133–135. [PubMed]
  • Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc.126, 5666–5667. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography