PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1867.
Published online 2008 September 6. doi:  10.1107/S1600536808027451
PMCID: PMC2959470

Methyl (1H-pyrrol-2-ylcarbonyl­amino)acetate

Abstract

In the crystal structure of the title compound, C8H10N2O3, mol­ecules are linked by N—H(...)O hydrogen bonds, forming ribbons of centrosymmetric dimers extending along the c axis.

Related literature

For related literature, see: Banwell et al. (2006 [triangle]); Bernstein et al. (1995 [triangle]); Faulkner (2002 [triangle]); Sosa et al. (2002 [triangle]); Zeng (2006 [triangle]); Zeng et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1867-scheme1.jpg

Experimental

Crystal data

  • C8H10N2O3
  • M r = 182.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1867-efi1.jpg
  • a = 11.3398 (19) Å
  • b = 5.0732 (9) Å
  • c = 16.500 (3) Å
  • β = 108.060 (3)°
  • V = 902.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 (2) K
  • 0.48 × 0.41 × 0.21 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.952, T max = 0.979
  • 4219 measured reflections
  • 1576 independent reflections
  • 1417 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.166
  • S = 1.10
  • 1576 reflections
  • 119 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027451/cf2214sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027451/cf2214Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

supplementary crystallographic information

Comment

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002). Some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason why they have attracted our interest. This study follows our previous studies on methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)propionate (Zeng et al., 2007) and 3-bromo-1-methyl-6,7-dihydropyrrolo[2,3-c]azepine- 4,8(1H,5H)-dione (Zeng, 2006).

In the crystal structure, molecules of the title compound are linked through N1—H1···O1i hydrogen bonds to form centrosymmetric dimers (Fig. 2) of graph-set motif R22(10) (Bernstein et al., 1995), which are linked by N2—H2···O2ii hydrogen bonds, generating ribbons extending along the c axis (also shown in Fig. 2). Bond lengths and angles are unexceptional.

Experimental

The hydrochloric acid salt of glycine methyl ester (0.63 g, 5 mmol) and 2-trichloroacetylpyrrole (1.06 g, 5 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 10 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in EtOH at room temperature. Light-yellow monoclinic crystals suitable for X-ray analysis (m.p. 420 K, 95.6% yield) grew over a period of one week when the solution was exposed to the air. CH&N elemental analysis. Calc. for C8H10N2O3: C 52.74, H 5.53, N 15.38%; found: C 52.78, H 5.59, N 15.49%.

Refinement

H atoms were positioned geometrically [C—H = 0.99Å for CH2, 0.98Å for CH3, 0.95Å for CH (aromatic), and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Ribbons of dimers formed by hydrogen bonds (dashed lines).

Crystal data

C8H10N2O3Dx = 1.341 Mg m3
Mr = 182.18Melting point: 420 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3398 (19) ÅCell parameters from 3468 reflections
b = 5.0732 (9) Åθ = 2.6–27.0°
c = 16.500 (3) ŵ = 0.10 mm1
β = 108.060 (3)°T = 173 K
V = 902.5 (3) Å3Block, light yellow
Z = 40.48 × 0.41 × 0.21 mm
F(000) = 384

Data collection

Bruker SMART 1K CCD area-detector diffractometer1576 independent reflections
Radiation source: fine-focus sealed tube1417 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −13→13
Tmin = 0.952, Tmax = 0.979k = −6→5
4219 measured reflectionsl = −16→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.1092P)2 + 0.2414P] where P = (Fo2 + 2Fc2)/3
1576 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.89632 (13)0.2572 (2)0.45357 (8)0.0387 (4)
O20.63332 (13)0.2895 (3)0.31013 (8)0.0391 (4)
N20.85781 (14)0.5697 (3)0.35256 (9)0.0343 (4)
H20.87770.64720.31090.041*
O30.58657 (13)0.4945 (3)0.41547 (9)0.0513 (5)
C31.06971 (17)0.3350 (4)0.29921 (12)0.0364 (5)
H31.04140.47780.26080.044*
N11.08932 (14)0.0465 (3)0.40331 (10)0.0343 (4)
H11.0773−0.03860.44660.041*
C50.92253 (15)0.3607 (3)0.39334 (10)0.0306 (5)
C60.75496 (17)0.6645 (3)0.37859 (12)0.0352 (5)
H6A0.72110.82660.34640.042*
H6B0.78470.70990.44000.042*
C70.65395 (17)0.4608 (3)0.36324 (11)0.0329 (5)
C41.02305 (17)0.2601 (3)0.36367 (11)0.0313 (5)
C11.17634 (18)−0.0142 (4)0.36582 (13)0.0394 (5)
H1A1.2344−0.15460.38170.047*
C21.16634 (18)0.1618 (4)0.30085 (13)0.0413 (5)
H2A1.21590.16520.26380.050*
C80.4845 (3)0.3088 (6)0.40341 (18)0.0720 (9)
H8A0.42820.32310.34500.108*
H8B0.43910.34940.44370.108*
H8C0.51740.12900.41350.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0451 (8)0.0384 (8)0.0386 (8)0.0040 (6)0.0217 (6)0.0103 (5)
O20.0448 (8)0.0368 (7)0.0392 (8)−0.0018 (6)0.0180 (6)−0.0094 (6)
N20.0403 (9)0.0297 (8)0.0388 (9)0.0010 (6)0.0207 (7)0.0065 (6)
O30.0508 (9)0.0644 (10)0.0499 (9)−0.0184 (7)0.0319 (8)−0.0247 (7)
C30.0388 (10)0.0350 (10)0.0387 (10)−0.0025 (8)0.0166 (8)0.0063 (8)
N10.0376 (9)0.0304 (8)0.0385 (9)−0.0018 (6)0.0170 (7)0.0044 (6)
C50.0330 (9)0.0288 (10)0.0315 (9)−0.0055 (7)0.0120 (8)0.0008 (7)
C60.0423 (11)0.0274 (9)0.0394 (10)0.0022 (7)0.0178 (8)−0.0003 (7)
C70.0383 (10)0.0322 (9)0.0304 (9)0.0046 (7)0.0141 (8)−0.0008 (7)
C40.0341 (9)0.0270 (9)0.0337 (10)−0.0042 (7)0.0119 (8)0.0006 (7)
C10.0368 (10)0.0345 (10)0.0502 (12)0.0011 (8)0.0184 (9)0.0004 (8)
C20.0416 (11)0.0416 (11)0.0492 (12)−0.0029 (8)0.0265 (9)0.0022 (9)
C80.0677 (16)0.097 (2)0.0690 (16)−0.0400 (15)0.0468 (14)−0.0364 (15)

Geometric parameters (Å, °)

O1—C51.239 (2)N1—H10.880
O2—C71.204 (2)C5—C41.465 (2)
N2—C51.345 (2)C6—C71.505 (3)
N2—C61.444 (2)C6—H6A0.990
N2—H20.880C6—H6B0.990
O3—C71.328 (2)C1—C21.373 (3)
O3—C81.458 (3)C1—H1A0.950
C3—C41.380 (2)C2—H2A0.950
C3—C21.398 (3)C8—H8A0.980
C3—H30.950C8—H8B0.980
N1—C11.353 (2)C8—H8C0.980
N1—C41.365 (2)
C5—N2—C6118.64 (14)O2—C7—O3122.96 (17)
C5—N2—H2120.7O2—C7—C6125.73 (17)
C6—N2—H2120.7O3—C7—C6111.30 (15)
C7—O3—C8114.87 (16)N1—C4—C3107.59 (16)
C4—C3—C2107.31 (17)N1—C4—C5119.11 (15)
C4—C3—H3126.3C3—C4—C5133.30 (17)
C2—C3—H3126.3N1—C1—C2108.28 (17)
C1—N1—C4109.46 (15)N1—C1—H1A125.9
C1—N1—H1125.3C2—C1—H1A125.9
C4—N1—H1125.3C1—C2—C3107.37 (17)
O1—C5—N2120.38 (16)C1—C2—H2A126.3
O1—C5—C4121.72 (16)C3—C2—H2A126.3
N2—C5—C4117.89 (14)O3—C8—H8A109.5
N2—C6—C7111.34 (14)O3—C8—H8B109.5
N2—C6—H6A109.4H8A—C8—H8B109.5
C7—C6—H6A109.4O3—C8—H8C109.5
N2—C6—H6B109.4H8A—C8—H8C109.5
C7—C6—H6B109.4H8B—C8—H8C109.5
H6A—C6—H6B108.0
C6—N2—C5—O1−2.1 (2)C2—C3—C4—N1−0.2 (2)
C6—N2—C5—C4177.39 (15)C2—C3—C4—C5−179.42 (19)
C5—N2—C6—C7−63.6 (2)O1—C5—C4—N10.2 (3)
C8—O3—C7—O2−0.4 (3)N2—C5—C4—N1−179.30 (14)
C8—O3—C7—C6178.56 (19)O1—C5—C4—C3179.36 (19)
N2—C6—C7—O2−26.5 (3)N2—C5—C4—C3−0.1 (3)
N2—C6—C7—O3154.55 (16)C4—N1—C1—C2−0.1 (2)
C1—N1—C4—C30.2 (2)N1—C1—C2—C30.0 (2)
C1—N1—C4—C5179.57 (16)C4—C3—C2—C10.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.932.782 (2)162.
N2—H2···O2ii0.882.092.9372 (19)161.

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2214).

References

  • Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem.14, 4627–4638. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Faulkner, D. J. (2002). Nat. Prod. Rep.18, 1–48. [PubMed]
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem.67, 4498–4500. [PubMed]
  • Zeng, X.-C. (2006). Acta Cryst. E62, o5505–o5507.
  • Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography