PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1984–o1985.
Published online 2008 September 20. doi:  10.1107/S1600536808030134
PMCID: PMC2959466

A P,O,P′-tridentate mixed-donor scorpionate ligand: 6-[4,6-bis­(diphenyl­phosphino)-10H-phenoxazin-10-yl]hexan-1-ol

Abstract

The title compound, C42H39NO2P2, is a P,O,P′-tridentate scorpionate-type ligand and has one mol­ecule in the asymmetric unit. The angles involving the P atoms range from 100.21 (7) to 104.89 (7)°. The N-hexa­nol group was found to be disordered and was refined over two positions with final occupancies of 0.683 (3) and 0.317 (3) which affected the C—O and C—N bond lengths. The bond lengths for C—O range from 1.402 (2) to 1.415 (2) Å and for C—N from 1.410 (2) to 1.448 (3) Å for the major disorder component; the corresponding ranges for the minor disorder component are 1.429 (3)–1.408 (3) and 1.474 (3)–1.474 (4) Å.

Related literature

For scorpionate type ligands based on the nixantphos backbone, see: Marimuthu et al. (2008a [triangle],b [triangle]). For scorpionate ligands, see: Pettinari, (2004 [triangle]); Trofimenko (1993 [triangle]); Leung, (2007 [triangle]); Mayer et al. (1994 [triangle]). For hydrogen bonding, see: Chen & Craven (1995 [triangle]); Monge et al. (1978 [triangle]). For details of the synthesis, see: Reymond et al. (1996 [triangle]); Van der Veen et al. (2000 [triangle]). For a related structure, see: Osiński et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1984-scheme1.jpg

Experimental

Crystal data

  • C42H39NO2P2
  • M r = 651.68
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1984-efi1.jpg
  • a = 10.4258 (2) Å
  • b = 11.1402 (3) Å
  • c = 15.3590 (4) Å
  • α = 75.777 (1)°
  • β = 88.583 (1)°
  • γ = 79.453 (2)°
  • V = 1699.60 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 173 (2) K
  • 0.51 × 0.31 × 0.29 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 30269 measured reflections
  • 8211 independent reflections
  • 6458 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.122
  • S = 1.08
  • 8211 reflections
  • 489 parameters
  • 115 restraints
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-NT (Bruker, 2005 [triangle]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030134/rt2023sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030134/rt2023Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Manuel Fernandez for the data collection, and SASOL, THRIP and the University of KwaZulu-Natal for financial support.

supplementary crystallographic information

Comment

The title compound (I) was synthesized as part of our on going investigation of scorpionate type ligands based on the nixantphos backbone (Marimuthu et al.,2008a,b). Scorpionate ligands coordinate to metal centres to give unique types of coordination compounds. These compounds exhibit a characteristic type of geometry, enforced by the pincers and the third donor which comes across the plane (formed by metal and pincers) to coordinate to the metal (Pettinari, 2004). The common feature of most scorpionate ligands is that they uniformly contain a single type of donor atom, typically N– (Trofimenko, 1993), O– (Leung, 2007), or P– (Mayer et al., 1994). In contrast, this research is focused on the preparation of chelating P-donor ligands based on a nixantphos backbone functionalized by various hard and soft donors that serve as the third binding site of the ligands. The funtionalized N-hexanol group was found to be disordered and was refined over two positions with final occupancies of 0.68 and 0.32. If the nixantphos moiety is considered as the 'head' of the compound (I) and the hexanol chain as its 'tail', then the packing in (I) can be described as stacked in a 'head' to 'tail' arrangement. Due to this arrangement several intermolecular interactions especially of type O2—H···O1 are observed between the 'heads' and 'tails' of adjacent molecules. The H···O1 interatomic lengths range from 2.733 to 3.346 Å. Although these are unusually long for classical hydrogen bonding (Chen and Craven, 1995; Monge et al., 1978), the interactions are significant in maintaining the integrity of the disordered crystal structure. The bond angles involving the P atoms range from 100.21 (7) ° to 104.89 (7) °.

Experimental

A two part synthesis involving: a) alkylation (Reymond et al., 1996), and b) deprotection (van der Veen et al., 2000) was adapted from literature. Nixantphos (0.20 g, 0.36 mmol) was dissolved in 4 ml of dry DMF to which NaH (0.22 g, 0.54 millimol, 60% dispersed in mineral oil) was added, followed by the addition of (6-bromohexyloxy)(tertbutyl)dimethylsilane (0.18 g, 0.63 millimol). The resulting mixture was stirred overnight at 100 °C. The reaction was cooled to room temperature and hydrolysed with 10 ml of water. The organic phase was extracted with 4 x 15 ml ethyl acetate and the combined fractions dried over sodium sulfate. Thereafter the solvent was removed in vacuo and the residue chromatographed with 10% hexane/ethyl acetate to give the protected precursor of the title compound (I). The precursor was dissolved in 25 ml THF, and 2.5 equivalents of tetra-n-butylammoniumflouride trihydrate was added. The reaction was left to stir overnight at room temperature and was followed by aqueous work-up. The resulting crude product of compound (I) was chromatographed with 20% hexane/ethyl acetate and recrystalized from a solution of dichloromethane/ethanol (1:1) to yield 23% of pale yellow crystals of pure (I). m.p. 440–441 K.

Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m): = 1.67–1.24 (m, CH2), 3.46 (t, CH2OH), 3.65 (t, NCH2),5.97 (d, 2H; J(H,H) = 7.8 Hz), 6.41 (d, 2H; J(H,H) = 7.8 Hz), 6.64 (t, 2H; J(H,H) = 7.8 Hz), 7.20–7.18 (m, 20H).

13C NMR (400 MHz, CDCl3, δ, p.p.m): = 24.9 (CH2),25.8 (CH2), 27.0 (CH2), 32.9 (CH2), 44.8 (CH2), 63.0 (OCH2), 111.7 (CH), 123.6, 125.1 (CH), 128.1 (CH), 128.1 (CH), 128.1 (CH), 128.2 (CH), 134.0 (m, CH), 137.0 (t, C), 147.1 (t, CO).

31P NMR (600 MHz, CDCl3, δ, p.p.m): = -19.2.

MS m/z -[fragment]-(%): 651.2485 –[M] – (34%), calculated = 651.25 for C42H39NO2P2.

FTIR: cm-1 = 3582(s, OH), 3043(m), 3047(m), 2919(m), 2848(m), 1943(m), 1874(m), 1803(m), 1574(s), 1545(s), 1550(w), 1459, 1414(s), 1375(s), 1269(w), 1224(m), 1176(s), 1089 (CO), 742(s), 692(s).

Refinement

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms. The N-hexanol group was found to be disordered and was refined over two positions using a combination of SADI, SAME, DELU and SIMU restraints, with final occupancies of 0.683 (3) and 0.317 (3).

All hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms (C — H = 0.95 - 0.99 Å) with Uiso(H) = 1.2 Ueq(C) for aryl H or 1.5 Ueq(C) for alkyl.

Figures

Fig. 1.
Molecular structure of the title complex. Thermal ellipsoids are shown at 50% probability levels.

Crystal data

C42H39NO2P2Z = 2
Mr = 651.68F(000) = 688
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4258 (2) ÅCell parameters from 5800 reflections
b = 11.1402 (3) Åθ = 2.4–28.4°
c = 15.3590 (4) ŵ = 0.17 mm1
α = 75.777 (1)°T = 173 K
β = 88.583 (1)°Prismic, yellow
γ = 79.453 (2)°0.51 × 0.31 × 0.29 mm
V = 1699.60 (7) Å3

Data collection

Bruker SMART CCD area-detector diffractometer6458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
graphiteθmax = 28.0°, θmin = 1.4°
[var phi] and ω scansh = −13→13
30269 measured reflectionsk = −14→14
8211 independent reflectionsl = −20→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0654P)2 + 0.218P] where P = (Fo2 + 2Fc2)/3
8211 reflections(Δ/σ)max = 0.001
489 parametersΔρmax = 0.42 e Å3
115 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.10850 (18)0.95659 (15)0.14870 (12)0.0403 (4)
C20.04581 (16)1.07476 (14)0.15453 (11)0.0341 (4)
H20.05601.14690.10870.041*
C3−0.03150 (17)1.08802 (15)0.22679 (12)0.0386 (4)
H3−0.07291.16980.23070.046*
C4−0.04999 (17)0.98523 (15)0.29330 (12)0.0363 (4)
H4−0.10370.99650.34260.044*
C50.00996 (14)0.86440 (13)0.28850 (10)0.0263 (3)
C60.08763 (16)0.85335 (14)0.21642 (12)0.0348 (4)
C70.21739 (16)0.71321 (15)0.14128 (11)0.0338 (4)
C80.26737 (14)0.58992 (14)0.14232 (10)0.0261 (3)
C90.34299 (16)0.56684 (16)0.07008 (11)0.0350 (4)
H90.37940.48270.06870.042*
C100.36543 (17)0.66473 (17)0.00077 (11)0.0381 (4)
H100.41690.6474−0.04810.046*
C110.31406 (16)0.78831 (16)0.00116 (11)0.0347 (4)
H110.32970.8551−0.04740.042*
C120.23980 (18)0.81449 (15)0.07248 (12)0.0393 (4)
C130.2513 (3)1.0437 (2)0.02672 (16)0.0311 (6)0.683 (3)
H13A0.34081.01480.00800.037*0.683 (3)
H13B0.25611.10770.06070.037*0.683 (3)
C140.1672 (2)1.1065 (2)−0.05704 (17)0.0350 (6)0.683 (3)
H14A0.07661.1336−0.03940.042*0.683 (3)
H14B0.16581.0449−0.09360.042*0.683 (3)
C150.2183 (2)1.2209 (2)−0.11373 (16)0.0357 (6)0.683 (3)
H15A0.15201.2685−0.16060.043*0.683 (3)
H15B0.23041.2770−0.07480.043*0.683 (3)
C160.3457 (4)1.1862 (4)−0.1583 (3)0.0408 (10)0.683 (3)
H16A0.41211.1400−0.11110.049*0.683 (3)
H16B0.33381.1283−0.19590.049*0.683 (3)
C170.3969 (4)1.2969 (4)−0.2162 (3)0.0381 (11)0.683 (3)
H17A0.41471.3514−0.17750.046*0.683 (3)
H17B0.32761.3467−0.26020.046*0.683 (3)
C13B0.1715 (5)1.0427 (5)−0.0122 (3)0.0339 (12)0.317 (3)
H13C0.09171.1085−0.02220.041*0.317 (3)
H13D0.18961.0151−0.06850.041*0.317 (3)
C14B0.2856 (6)1.0974 (6)0.0113 (4)0.0476 (15)0.317 (3)
H14C0.36531.03170.01930.057*0.317 (3)
H14D0.26861.12050.06930.057*0.317 (3)
C15B0.3105 (7)1.2130 (5)−0.0593 (4)0.0532 (17)0.317 (3)
H15C0.22551.2677−0.08020.064*0.317 (3)
H15D0.36041.2610−0.03060.064*0.317 (3)
C16B0.3839 (9)1.1846 (9)−0.1399 (5)0.045 (2)0.317 (3)
H16C0.32851.1491−0.17470.054*0.317 (3)
H16D0.46331.1206−0.11930.054*0.317 (3)
C17B0.4226 (10)1.3013 (9)−0.1998 (7)0.045 (3)0.317 (3)
H17C0.34431.3578−0.23160.054*0.317 (3)
H17D0.46181.3473−0.16300.054*0.317 (3)
C180.51909 (17)1.26407 (17)−0.26682 (12)0.0400 (4)
H18A0.59141.2174−0.22420.048*
H18B0.50381.2105−0.30690.048*
C210.14465 (15)0.69008 (15)0.43719 (10)0.0297 (3)
C220.20133 (17)0.56556 (16)0.47588 (11)0.0374 (4)
H220.16180.49910.46670.045*
C230.31469 (19)0.5377 (2)0.52756 (12)0.0483 (5)
H230.35250.45240.55360.058*
C240.37245 (18)0.6324 (2)0.54126 (13)0.0506 (5)
H240.45100.61270.57610.061*
C250.31694 (18)0.7565 (2)0.50468 (14)0.0477 (5)
H250.35590.82210.51580.057*
C260.20443 (16)0.78555 (17)0.45171 (12)0.0390 (4)
H260.16800.87110.42520.047*
C31−0.12692 (15)0.78316 (14)0.44558 (11)0.0289 (3)
C32−0.09950 (16)0.80924 (17)0.52627 (11)0.0360 (4)
H32−0.01150.79570.54670.043*
C33−0.19952 (19)0.85480 (18)0.57712 (13)0.0447 (4)
H33−0.17960.87200.63230.054*
C34−0.32668 (19)0.87525 (19)0.54871 (13)0.0488 (5)
H34−0.39480.90590.58420.059*
C35−0.35526 (18)0.8513 (2)0.46878 (15)0.0544 (5)
H35−0.44330.86690.44810.065*
C36−0.25611 (17)0.80432 (19)0.41813 (13)0.0443 (4)
H36−0.27710.78620.36340.053*
C410.35700 (14)0.33337 (13)0.22967 (10)0.0259 (3)
C420.32873 (17)0.22495 (15)0.21177 (11)0.0332 (4)
H420.24190.22230.19600.040*
C430.42648 (18)0.11970 (16)0.21672 (12)0.0401 (4)
H430.40580.04590.20430.048*
C440.55208 (18)0.12183 (16)0.23939 (12)0.0402 (4)
H440.61820.04960.24310.048*
C450.58230 (17)0.22873 (16)0.25679 (12)0.0384 (4)
H450.66950.23050.27210.046*
C460.48592 (15)0.33387 (15)0.25208 (11)0.0327 (4)
H460.50780.40730.26430.039*
C510.08077 (14)0.43856 (13)0.20881 (11)0.0278 (3)
C52−0.01832 (16)0.43793 (14)0.27117 (12)0.0335 (4)
H52−0.00060.44600.32960.040*
C53−0.14243 (16)0.42574 (15)0.24918 (13)0.0397 (4)
H53−0.20930.42570.29240.048*
C54−0.16890 (17)0.41373 (16)0.16488 (13)0.0416 (4)
H54−0.25460.40740.14930.050*
C55−0.07114 (17)0.41088 (16)0.10282 (12)0.0381 (4)
H55−0.08910.40020.04510.046*
C560.05286 (16)0.42354 (15)0.12440 (11)0.0334 (4)
H560.11960.42200.08120.040*
N10.2074 (2)0.93759 (18)0.08664 (16)0.0336 (6)0.683 (3)
N1B0.1493 (5)0.9347 (3)0.0605 (2)0.0303 (12)0.317 (3)
O10.1616 (2)0.73286 (17)0.22274 (13)0.0313 (5)0.683 (3)
O1B0.1088 (4)0.7331 (3)0.1957 (3)0.0310 (11)0.317 (3)
O20.55085 (14)1.37799 (13)−0.31765 (9)0.0533 (4)
H2A0.61551.3624−0.34950.080*
P1−0.00697 (4)0.71914 (4)0.37224 (3)0.02700 (11)
P20.23648 (4)0.46903 (3)0.24223 (3)0.02641 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0484 (10)0.0244 (8)0.0439 (10)−0.0034 (7)0.0186 (8)−0.0049 (7)
C20.0402 (9)0.0205 (7)0.0384 (9)−0.0043 (6)0.0050 (7)−0.0023 (6)
C30.0459 (10)0.0220 (7)0.0445 (10)0.0017 (7)0.0055 (8)−0.0081 (7)
C40.0406 (9)0.0274 (8)0.0384 (9)0.0002 (7)0.0085 (7)−0.0088 (7)
C50.0253 (7)0.0235 (7)0.0288 (8)−0.0030 (6)0.0007 (6)−0.0053 (6)
C60.0393 (9)0.0198 (7)0.0409 (9)0.0003 (6)0.0120 (7)−0.0045 (7)
C70.0366 (9)0.0267 (8)0.0364 (9)−0.0040 (6)0.0157 (7)−0.0074 (7)
C80.0260 (7)0.0249 (7)0.0275 (8)−0.0038 (6)0.0012 (6)−0.0075 (6)
C90.0390 (9)0.0311 (8)0.0328 (9)0.0021 (7)0.0051 (7)−0.0106 (7)
C100.0397 (9)0.0426 (9)0.0305 (9)−0.0024 (7)0.0097 (7)−0.0109 (7)
C110.0372 (9)0.0347 (8)0.0301 (8)−0.0071 (7)0.0086 (7)−0.0044 (7)
C120.0458 (10)0.0259 (8)0.0433 (10)−0.0056 (7)0.0181 (8)−0.0055 (7)
C130.0376 (14)0.0273 (12)0.0290 (12)−0.0123 (10)0.0002 (10)−0.0036 (9)
C140.0378 (13)0.0321 (13)0.0327 (13)−0.0079 (10)−0.0005 (10)−0.0024 (10)
C150.0464 (14)0.0261 (11)0.0297 (12)−0.0035 (10)0.0017 (10)0.0000 (9)
C160.052 (2)0.0308 (15)0.0396 (17)−0.0127 (14)0.0084 (15)−0.0063 (13)
C170.058 (2)0.0271 (15)0.0310 (17)−0.0115 (14)0.0083 (16)−0.0093 (12)
C13B0.045 (3)0.029 (3)0.027 (3)−0.009 (2)0.006 (2)−0.004 (2)
C14B0.055 (3)0.049 (3)0.049 (3)−0.028 (3)0.013 (3)−0.018 (2)
C15B0.069 (4)0.045 (3)0.057 (3)−0.031 (3)0.026 (3)−0.023 (2)
C16B0.057 (5)0.037 (3)0.050 (4)−0.022 (3)0.014 (3)−0.019 (3)
C17B0.064 (5)0.041 (4)0.039 (4)−0.025 (3)0.012 (4)−0.017 (3)
C180.0402 (9)0.0393 (9)0.0395 (10)−0.0092 (7)−0.0001 (7)−0.0059 (8)
C210.0262 (7)0.0312 (8)0.0290 (8)−0.0011 (6)0.0053 (6)−0.0057 (6)
C220.0415 (9)0.0339 (9)0.0318 (9)0.0008 (7)0.0040 (7)−0.0044 (7)
C230.0465 (11)0.0516 (11)0.0336 (10)0.0133 (9)−0.0009 (8)−0.0020 (8)
C240.0333 (9)0.0767 (15)0.0350 (10)0.0043 (9)−0.0031 (8)−0.0111 (10)
C250.0340 (9)0.0641 (13)0.0479 (11)−0.0133 (9)0.0014 (8)−0.0162 (10)
C260.0308 (8)0.0389 (9)0.0453 (10)−0.0067 (7)0.0012 (7)−0.0066 (8)
C310.0263 (7)0.0265 (7)0.0324 (8)−0.0051 (6)0.0054 (6)−0.0049 (6)
C320.0313 (8)0.0427 (9)0.0333 (9)−0.0058 (7)0.0034 (7)−0.0087 (7)
C330.0479 (11)0.0519 (11)0.0355 (10)−0.0082 (9)0.0119 (8)−0.0147 (8)
C340.0414 (10)0.0536 (11)0.0462 (11)−0.0011 (8)0.0195 (9)−0.0098 (9)
C350.0274 (9)0.0783 (15)0.0539 (12)−0.0019 (9)0.0074 (8)−0.0157 (11)
C360.0285 (9)0.0632 (12)0.0427 (10)−0.0077 (8)0.0024 (7)−0.0167 (9)
C410.0309 (8)0.0223 (7)0.0228 (7)−0.0006 (6)0.0019 (6)−0.0055 (6)
C420.0385 (9)0.0286 (8)0.0331 (9)−0.0023 (6)−0.0054 (7)−0.0110 (7)
C430.0545 (11)0.0266 (8)0.0395 (10)0.0015 (7)−0.0046 (8)−0.0146 (7)
C440.0431 (10)0.0333 (9)0.0378 (9)0.0110 (7)0.0022 (8)−0.0099 (7)
C450.0295 (8)0.0385 (9)0.0420 (10)0.0003 (7)0.0021 (7)−0.0050 (8)
C460.0323 (8)0.0280 (8)0.0368 (9)−0.0044 (6)0.0014 (7)−0.0067 (7)
C510.0272 (7)0.0208 (7)0.0320 (8)−0.0009 (6)0.0008 (6)−0.0027 (6)
C520.0372 (9)0.0241 (7)0.0385 (9)−0.0036 (6)0.0081 (7)−0.0087 (7)
C530.0324 (9)0.0288 (8)0.0566 (12)−0.0050 (7)0.0129 (8)−0.0094 (8)
C540.0313 (9)0.0296 (8)0.0584 (12)−0.0061 (7)−0.0049 (8)0.0002 (8)
C550.0410 (10)0.0333 (9)0.0353 (9)−0.0093 (7)−0.0087 (7)0.0032 (7)
C560.0347 (8)0.0316 (8)0.0296 (8)−0.0061 (7)0.0011 (7)0.0003 (7)
N10.0397 (13)0.0247 (10)0.0343 (12)−0.0076 (9)0.0098 (11)−0.0031 (8)
N1B0.034 (3)0.022 (2)0.033 (3)−0.0073 (18)0.013 (2)−0.0041 (18)
O10.0354 (12)0.0214 (8)0.0294 (11)0.0051 (8)0.0100 (9)−0.0005 (7)
O1B0.027 (2)0.0205 (18)0.038 (3)0.0042 (17)0.0124 (19)0.0000 (17)
O20.0518 (8)0.0506 (8)0.0500 (8)−0.0079 (6)0.0098 (6)−0.0001 (6)
P10.0266 (2)0.02380 (19)0.0298 (2)−0.00413 (15)0.00407 (15)−0.00582 (16)
P20.0285 (2)0.02239 (19)0.0277 (2)−0.00139 (14)0.00210 (15)−0.00764 (15)

Geometric parameters (Å, °)

C1—C21.381 (2)C16B—H16D0.9900
C1—C61.394 (2)C17B—C181.500 (5)
C1—N11.410 (2)C17B—H17C0.9900
C1—N1B1.474 (3)C17B—H17D0.9900
C2—C31.377 (2)C18—O21.408 (2)
C2—H20.9500C18—H18A0.9900
C3—C41.374 (2)C18—H18B0.9900
C3—H30.9500C21—C261.391 (2)
C4—C51.395 (2)C21—C221.392 (2)
C4—H40.9500C21—P11.8250 (16)
C5—C61.372 (2)C22—C231.384 (3)
C5—P11.8370 (15)C22—H220.9500
C6—O11.402 (2)C23—C241.366 (3)
C6—O1B1.429 (3)C23—H230.9500
C7—C81.373 (2)C24—C251.380 (3)
C7—C121.394 (2)C24—H240.9500
C7—O1B1.408 (3)C25—C261.386 (2)
C7—O11.415 (2)C25—H250.9500
C8—C91.393 (2)C26—H260.9500
C8—P21.8414 (15)C31—C361.382 (2)
C9—C101.374 (2)C31—C321.388 (2)
C9—H90.9500C31—P11.8275 (16)
C10—C111.384 (2)C32—C331.384 (2)
C10—H100.9500C32—H320.9500
C11—C121.385 (2)C33—C341.367 (3)
C11—H110.9500C33—H330.9500
C12—N11.420 (2)C34—C351.369 (3)
C12—N1B1.464 (3)C34—H340.9500
C13—N11.448 (3)C35—C361.382 (3)
C13—C141.517 (3)C35—H350.9500
C13—H13A0.9900C36—H360.9500
C13—H13B0.9900C41—C421.385 (2)
C14—C151.532 (3)C41—C461.397 (2)
C14—H14A0.9900C41—P21.8264 (14)
C14—H14B0.9900C42—C431.393 (2)
C15—C161.510 (4)C42—H420.9500
C15—H15A0.9900C43—C441.369 (3)
C15—H15B0.9900C43—H430.9500
C16—C171.508 (3)C44—C451.374 (3)
C16—H16A0.9900C44—H440.9500
C16—H16B0.9900C45—C461.385 (2)
C17—C181.510 (3)C45—H450.9500
C17—H17A0.9900C46—H460.9500
C17—H17B0.9900C51—C521.391 (2)
C13B—N1B1.474 (4)C51—C561.392 (2)
C13B—C14B1.520 (5)C51—P21.8284 (16)
C13B—H13C0.9900C52—C531.384 (2)
C13B—H13D0.9900C52—H520.9500
C14B—C15B1.524 (5)C53—C541.374 (3)
C14B—H14C0.9900C53—H530.9500
C14B—H14D0.9900C54—C551.380 (3)
C15B—C16B1.508 (5)C54—H540.9500
C15B—H15C0.9900C55—C561.383 (2)
C15B—H15D0.9900C55—H550.9500
C16B—C17B1.512 (5)C56—H560.9500
C16B—H16C0.9900O2—H2A0.8400
C2—C1—C6117.85 (15)C16B—C17B—H17C109.8
C2—C1—N1122.95 (16)C18—C17B—H17D109.8
C6—C1—N1118.37 (15)C16B—C17B—H17D109.8
C2—C1—N1B119.71 (19)H17C—C17B—H17D108.2
C6—C1—N1B117.95 (19)O2—C18—C17B105.1 (4)
C3—C2—C1120.00 (15)O2—C18—C17107.4 (2)
C3—C2—H2120.0O2—C18—H18A110.2
C1—C2—H2120.0C17B—C18—H18A98.1
C4—C3—C2121.30 (15)C17—C18—H18A110.2
C4—C3—H3119.4O2—C18—H18B110.2
C2—C3—H3119.4C17B—C18—H18B123.7
C3—C4—C5120.09 (15)C17—C18—H18B110.2
C3—C4—H4120.0H18A—C18—H18B108.5
C5—C4—H4120.0C26—C21—C22118.56 (15)
C6—C5—C4117.69 (14)C26—C21—P1123.49 (12)
C6—C5—P1117.70 (11)C22—C21—P1117.93 (13)
C4—C5—P1124.60 (12)C23—C22—C21120.57 (18)
C5—C6—C1123.05 (14)C23—C22—H22119.7
C5—C6—O1114.86 (15)C21—C22—H22119.7
C1—C6—O1121.33 (15)C24—C23—C22120.29 (18)
C5—C6—O1B115.83 (19)C24—C23—H23119.9
C1—C6—O1B117.6 (2)C22—C23—H23119.9
C8—C7—C12123.22 (14)C23—C24—C25120.13 (18)
C8—C7—O1B115.96 (19)C23—C24—H24119.9
C12—C7—O1B117.7 (2)C25—C24—H24119.9
C8—C7—O1115.02 (15)C24—C25—C26120.11 (19)
C12—C7—O1120.76 (15)C24—C25—H25119.9
C7—C8—C9117.48 (14)C26—C25—H25119.9
C7—C8—P2117.19 (11)C25—C26—C21120.32 (17)
C9—C8—P2125.24 (11)C25—C26—H26119.8
C10—C9—C8120.60 (15)C21—C26—H26119.8
C10—C9—H9119.7C36—C31—C32118.01 (15)
C8—C9—H9119.7C36—C31—P1116.18 (13)
C9—C10—C11120.92 (15)C32—C31—P1125.79 (12)
C9—C10—H10119.5C33—C32—C31120.40 (16)
C11—C10—H10119.5C33—C32—H32119.8
C10—C11—C12119.90 (15)C31—C32—H32119.8
C10—C11—H11120.1C34—C33—C32120.68 (18)
C12—C11—H11120.1C34—C33—H33119.7
C11—C12—C7117.88 (14)C32—C33—H33119.7
C11—C12—N1122.58 (16)C33—C34—C35119.63 (17)
C7—C12—N1118.43 (16)C33—C34—H34120.2
C11—C12—N1B119.68 (19)C35—C34—H34120.2
C7—C12—N1B118.50 (19)C34—C35—C36120.06 (18)
N1—C13—C14115.7 (2)C34—C35—H35120.0
N1—C13—H13A108.4C36—C35—H35120.0
C14—C13—H13A108.4C35—C36—C31121.21 (18)
N1—C13—H13B108.4C35—C36—H36119.4
C14—C13—H13B108.4C31—C36—H36119.4
H13A—C13—H13B107.4C42—C41—C46118.02 (14)
C13—C14—C15111.7 (2)C42—C41—P2125.36 (12)
C13—C14—H14A109.3C46—C41—P2116.03 (11)
C15—C14—H14A109.3C41—C42—C43120.58 (16)
C13—C14—H14B109.3C41—C42—H42119.7
C15—C14—H14B109.3C43—C42—H42119.7
H14A—C14—H14B107.9C44—C43—C42120.48 (16)
C16—C15—C14113.2 (2)C44—C43—H43119.8
C16—C15—H15A108.9C42—C43—H43119.8
C14—C15—H15A108.9C43—C44—C45119.83 (15)
C16—C15—H15B108.9C43—C44—H44120.1
C14—C15—H15B108.9C45—C44—H44120.1
H15A—C15—H15B107.7C44—C45—C46120.17 (16)
C17—C16—C15114.4 (3)C44—C45—H45119.9
C17—C16—H16A108.7C46—C45—H45119.9
C15—C16—H16A108.7C45—C46—C41120.91 (15)
C17—C16—H16B108.7C45—C46—H46119.5
C15—C16—H16B108.7C41—C46—H46119.5
H16A—C16—H16B107.6C52—C51—C56118.34 (15)
C16—C17—C18115.4 (3)C52—C51—P2116.88 (12)
C16—C17—H17A108.4C56—C51—P2124.67 (12)
C18—C17—H17A108.4C53—C52—C51120.89 (16)
C16—C17—H17B108.4C53—C52—H52119.6
C18—C17—H17B108.4C51—C52—H52119.6
H17A—C17—H17B107.5C54—C53—C52119.95 (16)
N1B—C13B—C14B111.0 (5)C54—C53—H53120.0
N1B—C13B—H13C109.4C52—C53—H53120.0
C14B—C13B—H13C109.4C53—C54—C55120.06 (16)
N1B—C13B—H13D109.4C53—C54—H54120.0
C14B—C13B—H13D109.4C55—C54—H54120.0
H13C—C13B—H13D108.0C54—C55—C56120.15 (17)
C13B—C14B—C15B113.8 (4)C54—C55—H55119.9
C13B—C14B—H14C108.8C56—C55—H55119.9
C15B—C14B—H14C108.8C55—C56—C51120.58 (16)
C13B—C14B—H14D108.8C55—C56—H56119.7
C15B—C14B—H14D108.8C51—C56—H56119.7
H14C—C14B—H14D107.7C1—N1—C12116.48 (16)
C16B—C15B—C14B114.8 (5)C1—N1—C13120.66 (18)
C16B—C15B—H15C108.6C12—N1—C13121.43 (18)
C14B—C15B—H15C108.6C12—N1B—C13B119.2 (3)
C16B—C15B—H15D108.6C12—N1B—C1109.9 (3)
C14B—C15B—H15D108.6C13B—N1B—C1118.8 (3)
H15C—C15B—H15D107.5C6—O1—C7114.79 (16)
C15B—C16B—C17B111.7 (5)C7—O1B—C6113.6 (3)
C15B—C16B—H16C109.3C18—O2—H2A109.5
C17B—C16B—H16C109.3C21—P1—C31102.21 (7)
C15B—C16B—H16D109.3C21—P1—C5100.61 (7)
C17B—C16B—H16D109.3C31—P1—C5100.22 (7)
H16C—C16B—H16D107.9C41—P2—C51104.89 (7)
C18—C17B—C16B109.4 (5)C41—P2—C8101.27 (7)
C18—C17B—H17C109.8C51—P2—C8100.21 (7)
C6—C1—C2—C31.7 (3)C43—C44—C45—C460.5 (3)
N1—C1—C2—C3−167.7 (2)C44—C45—C46—C410.0 (3)
N1B—C1—C2—C3157.4 (3)C42—C41—C46—C45−0.4 (2)
C1—C2—C3—C4−1.2 (3)P2—C41—C46—C45171.23 (13)
C2—C3—C4—C50.0 (3)C56—C51—C52—C53−1.5 (2)
C3—C4—C5—C60.7 (3)P2—C51—C52—C53174.79 (12)
C3—C4—C5—P1−179.70 (14)C51—C52—C53—C540.2 (2)
C4—C5—C6—C1−0.1 (3)C52—C53—C54—C551.5 (2)
P1—C5—C6—C1−179.75 (15)C53—C54—C55—C56−1.8 (2)
C4—C5—C6—O1170.02 (18)C54—C55—C56—C510.4 (2)
P1—C5—C6—O1−9.6 (2)C52—C51—C56—C551.3 (2)
C4—C5—C6—O1B−158.4 (3)P2—C51—C56—C55−174.75 (12)
P1—C5—C6—O1B22.0 (3)C2—C1—N1—C12−164.7 (2)
C2—C1—C6—C5−1.1 (3)C6—C1—N1—C1226.0 (3)
N1—C1—C6—C5168.8 (2)N1B—C1—N1—C12−71.4 (3)
N1B—C1—C6—C5−157.2 (3)C2—C1—N1—C131.9 (4)
C2—C1—C6—O1−170.58 (19)C6—C1—N1—C13−167.5 (2)
N1—C1—C6—O1−0.7 (3)N1B—C1—N1—C1395.1 (5)
N1B—C1—C6—O133.3 (3)C11—C12—N1—C1166.2 (2)
C2—C1—C6—O1B156.8 (3)C7—C12—N1—C1−26.1 (3)
N1—C1—C6—O1B−33.3 (3)N1B—C12—N1—C172.3 (3)
N1B—C1—C6—O1B0.7 (4)C11—C12—N1—C13−0.2 (4)
C12—C7—C8—C9−0.6 (3)C7—C12—N1—C13167.4 (2)
O1B—C7—C8—C9159.0 (3)N1B—C12—N1—C13−94.1 (5)
O1—C7—C8—C9−169.19 (17)C14—C13—N1—C1−81.6 (3)
C12—C7—C8—P2176.11 (14)C14—C13—N1—C1284.3 (3)
O1B—C7—C8—P2−24.3 (3)C11—C12—N1B—C13B−22.6 (6)
O1—C7—C8—P27.5 (2)C7—C12—N1B—C13B−179.8 (4)
C7—C8—C9—C10−0.2 (2)N1—C12—N1B—C13B82.0 (6)
P2—C8—C9—C10−176.62 (13)C11—C12—N1B—C1−164.8 (2)
C8—C9—C10—C110.3 (3)C7—C12—N1B—C138.0 (4)
C9—C10—C11—C120.5 (3)N1—C12—N1B—C1−60.2 (3)
C10—C11—C12—C7−1.3 (3)C14B—C13B—N1B—C12−74.1 (6)
C10—C11—C12—N1166.5 (2)C14B—C13B—N1B—C164.7 (6)
C10—C11—C12—N1B−158.6 (3)C2—C1—N1B—C12166.4 (2)
C8—C7—C12—C111.3 (3)C6—C1—N1B—C12−37.9 (4)
O1B—C7—C12—C11−158.0 (3)N1—C1—N1B—C1261.1 (3)
O1—C7—C12—C11169.31 (19)C2—C1—N1B—C13B24.1 (6)
C8—C7—C12—N1−166.94 (19)C6—C1—N1B—C13B179.8 (4)
O1B—C7—C12—N133.8 (3)N1—C1—N1B—C13B−81.2 (6)
O1—C7—C12—N11.1 (3)C5—C6—O1—C7165.88 (18)
C8—C7—C12—N1B158.9 (3)C1—C6—O1—C7−23.8 (3)
O1B—C7—C12—N1B−0.3 (4)O1B—C6—O1—C767.1 (4)
O1—C7—C12—N1B−33.1 (3)C8—C7—O1—C6−167.55 (18)
N1—C13—C14—C15177.5 (2)C12—C7—O1—C623.5 (3)
C13—C14—C15—C1669.7 (3)O1B—C7—O1—C6−68.7 (4)
C14—C15—C16—C17178.8 (3)C8—C7—O1B—C6160.1 (3)
C15—C16—C17—C18−175.8 (4)C12—C7—O1B—C6−39.1 (5)
N1B—C13B—C14B—C15B−177.6 (4)O1—C7—O1B—C665.0 (4)
C13B—C14B—C15B—C16B−79.7 (8)C5—C6—O1B—C7−161.6 (3)
C14B—C15B—C16B—C17B−171.5 (8)C1—C6—O1B—C738.9 (5)
C15B—C16B—C17B—C18167.7 (8)O1—C6—O1B—C7−66.6 (3)
C16B—C17B—C18—O2−178.7 (7)C26—C21—P1—C31−70.00 (15)
C16B—C17B—C18—C1780.3 (18)C22—C21—P1—C31108.41 (13)
C16—C17—C18—O2179.2 (3)C26—C21—P1—C533.01 (15)
C16—C17—C18—C17B−97.5 (19)C22—C21—P1—C5−148.57 (13)
C26—C21—C22—C230.0 (2)C36—C31—P1—C21−174.17 (13)
P1—C21—C22—C23−178.52 (13)C32—C31—P1—C214.35 (16)
C21—C22—C23—C240.0 (3)C36—C31—P1—C582.51 (14)
C22—C23—C24—C251.0 (3)C32—C31—P1—C5−98.97 (15)
C23—C24—C25—C26−1.9 (3)C6—C5—P1—C2179.94 (14)
C24—C25—C26—C211.9 (3)C4—C5—P1—C21−99.67 (15)
C22—C21—C26—C25−0.9 (3)C6—C5—P1—C31−175.44 (13)
P1—C21—C26—C25177.50 (14)C4—C5—P1—C314.94 (16)
C36—C31—C32—C330.1 (3)C42—C41—P2—C51−8.63 (15)
P1—C31—C32—C33−178.37 (14)C46—C41—P2—C51−179.58 (12)
C31—C32—C33—C34−0.2 (3)C42—C41—P2—C8−112.52 (14)
C32—C33—C34—C35−0.5 (3)C46—C41—P2—C876.54 (13)
C33—C34—C35—C361.3 (3)C52—C51—P2—C41123.64 (12)
C34—C35—C36—C31−1.4 (3)C56—C51—P2—C41−60.29 (14)
C32—C31—C36—C350.7 (3)C52—C51—P2—C8−131.68 (12)
P1—C31—C36—C35179.31 (17)C56—C51—P2—C844.39 (14)
C46—C41—C42—C430.4 (2)C7—C8—P2—C41−163.73 (13)
P2—C41—C42—C43−170.36 (13)C9—C8—P2—C4112.66 (16)
C41—C42—C43—C440.0 (3)C7—C8—P2—C5188.68 (13)
C42—C43—C44—C45−0.5 (3)C9—C8—P2—C51−94.93 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RT2023).

References

  • Bruker (2005). APEX2 and SAINT-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, L. & Craven, B. M. (1995). Acta Cryst. B51, 1081–1097. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Leung, W. (2007). Coord. Chem. Rev.251, 2266–2279.
  • Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008a). Acta Cryst. E64, o772. [PMC free article] [PubMed]
  • Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008b). Acta Cryst. E64, o711. [PMC free article] [PubMed]
  • Mayer, H. A., Otto, H., Kuhbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem.472, 347–354.
  • Monge, A., Martínez-Ripoll, M. & García-Blanco, S. (1978). Acta Cryst. B34, 2847–2850.
  • Osiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115–o3116.
  • Pettinari, C. (2004). Chim. Ind 12, 110–118.
  • Reymond, J. L., Koch, T., Schroer, J. & Tierney, E. (1996). Proc. Natl Acad. Sci. USA, 93, 4251-4256. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Trofimenko, S. (1993). Chem. Rev.93, 943–980.
  • Van der Veen, L. A., Keeven, P. H., Schoemaker, G. C., Reek, J. N. H., Kamer, P. C. J., van Leeuwen, P., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 872–883.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography