PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1255.
Published online 2008 September 13. doi:  10.1107/S1600536808028316
PMCID: PMC2959465

Penta­aqua­[5,5′-(m-phenylene)ditetra­zolato-κN 2]manganese(II) dihydrate

Abstract

The title compound, [Mn(C8H4N8)2(H2O)5]·2H2O, is the fourth transition metal complex containing the 1,3-di(2H-tetra­zol-5-yl)benzene ligand to be structurally characterized. The Mn^II^ cation has a distorted octahedral coordination geometry. The 1,3-di(tetra­zol-5-yl)benzene ligand is planar. All H atoms bonded to O atoms participate in hydrogen bonds, which link the mol­ecules into a framework structure.

Related literature

For similar complexes, see: Jiang et al. (2004 [triangle]); Hill et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1255-scheme1.jpg

Experimental

Crystal data

  • [Mn(C8H4N8)2(H2O)5]·2H2O
  • M r = 393.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1255-efi1.jpg
  • a = 6.5932 (1) Å
  • b = 10.0711 (2) Å
  • c = 12.9857 (3) Å
  • α = 68.296 (1)°
  • β = 77.213 (3)°
  • γ = 77.280 (5)°
  • V = 772.10 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 296 (2) K
  • 0.26 × 0.14 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.798, T max = 0.931
  • 7710 measured reflections
  • 3704 independent reflections
  • 2846 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.095
  • S = 1.02
  • 3704 reflections
  • 273 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global. DOI: 10.1107/S1600536808028316/ez2139sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028316/ez2139Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful for funding from the National High Advanced Scientific Project of China (No. 2007AA10Z406) and the Scientific Project of Dezhou City (No. 2006067).

supplementary crystallographic information

Comment

The 1,3-di(2H-tetrazol-5-yl)benzene (DHTB) ligand has hitherto been reported in the twice deprotonated form in the crystal structures of its complexes with zinc, cadmium and tin (Jiang et al., 2004; Hill et al., 1996), where it acts as a bridging ligand. This paper provides the first structural characterization of a DHTB complex with the transition metal Mn(II); the ligand in this complex is also twice deprotonated, but coordinated to the Mn atom as a terminal ligand.

The molecule of Mn(DHTB)(H2O)5 occupies a general position in the unit cell; the Mn atom has a non-distorted octahedral coordination as indicated by bond lengths and angles (Fig. 1). The DHTB ligand has an essentially planar conformation, with the maximum deviation from the mean plane being 0.054 (2) Å by atom C7. The geometry of the ligand is similar to that observed in Jiang et al. (2004) and Hill et al. (1996).

Strong π–π interactions between the aromatic rings are indicated by the short distance of 3.324 (3) Å between C1 and C8i [Symmetry code: (i) 1-x, 2-y, -z]. All hydrogen atoms that are bonded to oxygen atoms participate in H-bonding (Table 1); the extensive H-bond system and the strong π–π interactions link molecules of the complex and non-coordinated water molecules into a three-dimensional infinite network (Fig. 2).

Experimental

The hydrothermal reaction of Mn(NO3)2 (0.5 mmol) and 1,3-di(2H-tetrazol-5-yl)benzene (0.5 mmol) in 20 ml of distilled water at 180°C for 3 days resulted in light yellow plate crystals of the title compound, in a yield of 42%. The crystals were filtered, washed with cold EtOH and dried in air.

Refinement

All of the H atoms on carbon atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 times Ueq(C). All of the H atoms on oxygen atoms were located from the difference Fourier map, and refined freely, except for the bond length of O5—H5A being constrained to 0.87 Å.

Figures

Fig. 1.
Molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-labelling scheme.
Fig. 2.
Packing diagram viewed down the c axis,

Crystal data

[Mn(C8H4N8)2(H2O)5]·2H2OZ = 2
Mr = 393.24F(000) = 406
Triclinic, P1Dx = 1.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5932 (1) ÅCell parameters from 3628 reflections
b = 10.0711 (2) Åθ = 2.7–27.9°
c = 12.9857 (3) ŵ = 0.91 mm1
α = 68.296 (1)°T = 296 K
β = 77.213 (3)°Plate, yellow
γ = 77.280 (5)°0.26 × 0.14 × 0.08 mm
V = 772.10 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3704 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→6
Tmin = 0.798, Tmax = 0.931k = −13→13
7710 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0414P)2 + 0.3671P] where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.11390 (6)0.68638 (4)0.58413 (3)0.02732 (12)
O10.3923 (3)0.7734 (2)0.57901 (16)0.0388 (4)
O2−0.1155 (4)0.8808 (2)0.58408 (19)0.0402 (5)
O30.0794 (3)0.6043 (2)0.76359 (15)0.0361 (4)
O4−0.1679 (4)0.6027 (2)0.59456 (18)0.0411 (5)
O50.3064 (5)0.4784 (2)0.5795 (2)0.0508 (6)
O60.2643 (3)0.5392 (2)0.12086 (18)0.0370 (4)
O70.6605 (4)0.3559 (3)0.11514 (17)0.0367 (4)
N10.1613 (3)0.90491 (19)0.31988 (14)0.0244 (4)
N20.1633 (3)0.76902 (19)0.39242 (14)0.0264 (4)
N30.1980 (3)0.6792 (2)0.33621 (15)0.0300 (4)
N40.2200 (3)0.75287 (19)0.22651 (15)0.0268 (4)
N50.3286 (3)0.9471 (2)−0.21040 (15)0.0276 (4)
N60.3651 (3)0.9732 (2)−0.32077 (16)0.0315 (4)
N70.3610 (3)1.1128 (2)−0.37435 (16)0.0318 (4)
N80.3223 (3)1.1812 (2)−0.29911 (15)0.0275 (4)
C10.1974 (3)0.8914 (2)0.21865 (17)0.0205 (4)
C20.2128 (3)1.0130 (2)0.11148 (17)0.0216 (4)
C30.2001 (4)1.1526 (2)0.11091 (19)0.0306 (5)
H30.17961.16990.17830.037*
C40.2177 (4)1.2662 (2)0.0105 (2)0.0380 (6)
H40.20771.35970.01050.046*
C50.2501 (4)1.2411 (2)−0.09028 (19)0.0311 (5)
H50.26271.3178−0.15760.037*
C60.2640 (3)1.1024 (2)−0.09143 (17)0.0217 (4)
C70.2443 (3)0.9883 (2)0.00989 (17)0.0214 (4)
H70.25230.89500.00980.026*
C80.3031 (3)1.0766 (2)−0.19900 (17)0.0224 (4)
H1A0.455 (5)0.808 (3)0.519 (3)0.044 (9)*
H6A0.254 (5)0.602 (4)0.148 (3)0.053 (9)*
H4B−0.180 (5)0.511 (4)0.613 (3)0.063 (10)*
H7A0.659 (5)0.278 (4)0.135 (3)0.060 (12)*
H5B0.306 (6)0.402 (4)0.620 (3)0.068 (12)*
H1B0.378 (5)0.838 (4)0.608 (3)0.068 (11)*
H2B−0.124 (5)0.933 (4)0.614 (3)0.052 (10)*
H3B−0.018 (5)0.560 (3)0.800 (3)0.059 (10)*
H3A0.149 (5)0.615 (4)0.806 (3)0.065 (11)*
H4A−0.261 (6)0.645 (4)0.597 (3)0.076 (16)*
H2A−0.179 (7)0.908 (5)0.539 (4)0.105 (18)*
H6B0.286 (8)0.554 (5)0.070 (4)0.09 (2)*
H7B0.588 (10)0.394 (6)0.126 (5)0.11 (3)*
H5A0.396 (10)0.477 (7)0.567 (5)0.10 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0377 (2)0.02288 (18)0.02168 (18)−0.00688 (14)−0.00202 (14)−0.00808 (13)
O10.0537 (12)0.0406 (10)0.0275 (9)−0.0234 (9)0.0075 (8)−0.0164 (8)
O20.0540 (13)0.0266 (9)0.0423 (11)0.0024 (8)−0.0102 (10)−0.0174 (9)
O30.0426 (11)0.0429 (11)0.0241 (9)−0.0157 (9)−0.0046 (8)−0.0078 (8)
O40.0460 (13)0.0253 (10)0.0564 (13)−0.0068 (9)−0.0170 (10)−0.0128 (9)
O50.0666 (16)0.0254 (11)0.0400 (12)0.0045 (10)0.0116 (11)−0.0056 (9)
O60.0484 (11)0.0342 (10)0.0310 (10)−0.0101 (8)−0.0005 (9)−0.0150 (8)
O70.0479 (12)0.0276 (10)0.0350 (10)−0.0079 (9)−0.0089 (8)−0.0082 (8)
N10.0311 (10)0.0217 (9)0.0191 (8)−0.0043 (7)−0.0027 (7)−0.0059 (7)
N20.0347 (10)0.0215 (9)0.0209 (9)−0.0044 (8)−0.0021 (8)−0.0062 (7)
N30.0428 (12)0.0239 (9)0.0223 (9)−0.0070 (8)−0.0005 (8)−0.0083 (7)
N40.0356 (11)0.0240 (9)0.0203 (9)−0.0063 (8)−0.0011 (8)−0.0077 (7)
N50.0333 (10)0.0258 (9)0.0236 (9)−0.0052 (8)−0.0022 (8)−0.0092 (8)
N60.0375 (11)0.0343 (11)0.0247 (10)−0.0074 (9)−0.0005 (8)−0.0135 (8)
N70.0380 (11)0.0333 (11)0.0219 (9)−0.0072 (9)0.0009 (8)−0.0088 (8)
N80.0338 (10)0.0269 (10)0.0193 (9)−0.0048 (8)0.0001 (8)−0.0072 (7)
C10.0197 (10)0.0214 (10)0.0202 (10)−0.0028 (8)−0.0008 (8)−0.0083 (8)
C20.0207 (10)0.0219 (10)0.0203 (10)−0.0010 (8)−0.0028 (8)−0.0066 (8)
C30.0427 (14)0.0259 (11)0.0222 (11)−0.0016 (10)−0.0027 (10)−0.0105 (9)
C40.0638 (18)0.0197 (11)0.0301 (12)−0.0058 (11)−0.0040 (12)−0.0101 (9)
C50.0448 (14)0.0199 (10)0.0230 (11)−0.0015 (10)−0.0051 (10)−0.0028 (9)
C60.0206 (10)0.0238 (10)0.0203 (10)−0.0029 (8)−0.0022 (8)−0.0076 (8)
C70.0223 (10)0.0186 (10)0.0228 (10)−0.0027 (8)−0.0022 (8)−0.0073 (8)
C80.0206 (10)0.0235 (10)0.0213 (10)−0.0039 (8)−0.0024 (8)−0.0058 (8)

Geometric parameters (Å, °)

Mn1—O32.1423 (18)N1—N21.343 (2)
Mn1—O42.162 (2)N2—N31.314 (2)
Mn1—O12.1797 (19)N3—N41.332 (2)
Mn1—O22.1946 (19)N4—C11.338 (3)
Mn1—O52.212 (2)N5—N61.333 (3)
Mn1—N22.2857 (17)N5—C81.336 (3)
O1—H1A0.78 (3)N6—N71.315 (3)
O1—H1B0.85 (4)N7—N81.343 (3)
O2—H2B0.75 (3)N8—C81.338 (3)
O2—H2A0.73 (5)C1—C21.476 (3)
O3—H3B0.82 (3)C2—C31.387 (3)
O3—H3A0.84 (4)C2—C71.394 (3)
O4—H4B0.88 (4)C3—C41.382 (3)
O4—H4A0.67 (4)C3—H30.9300
O5—H5B0.75 (4)C4—C51.385 (3)
O5—H5A0.57 (6)C4—H40.9300
O6—H6A0.82 (3)C5—C61.385 (3)
O6—H6B0.61 (5)C5—H50.9300
O7—H7A0.73 (4)C6—C71.393 (3)
O7—H7B0.57 (6)C6—C81.472 (3)
N1—C11.335 (3)C7—H70.9300
O3—Mn1—O488.99 (8)N3—N2—N1109.26 (16)
O3—Mn1—O189.37 (8)N3—N2—Mn1120.96 (13)
O4—Mn1—O1177.83 (8)N1—N2—Mn1129.79 (13)
O3—Mn1—O292.33 (8)N2—N3—N4109.71 (17)
O4—Mn1—O281.61 (9)N3—N4—C1104.97 (17)
O1—Mn1—O297.05 (8)N6—N5—C8105.15 (17)
O3—Mn1—O589.42 (8)N7—N6—N5109.76 (17)
O4—Mn1—O590.03 (11)N6—N7—N8109.04 (17)
O1—Mn1—O591.36 (10)C8—N8—N7105.04 (18)
O2—Mn1—O5171.42 (11)N1—C1—N4111.28 (17)
O3—Mn1—N2177.82 (7)N1—C1—C2124.65 (18)
O4—Mn1—N292.24 (8)N4—C1—C2124.07 (18)
O1—Mn1—N289.44 (7)C3—C2—C7119.41 (19)
O2—Mn1—N289.63 (8)C3—C2—C1120.24 (19)
O5—Mn1—N288.78 (8)C7—C2—C1120.34 (18)
Mn1—O1—H1A116 (2)C4—C3—C2120.2 (2)
Mn1—O1—H1B118 (2)C4—C3—H3119.9
H1A—O1—H1B102 (3)C2—C3—H3119.9
Mn1—O2—H2B131 (3)C3—C4—C5120.2 (2)
Mn1—O2—H2A115 (4)C3—C4—H4119.9
H2B—O2—H2A113 (4)C5—C4—H4119.9
Mn1—O3—H3B120 (2)C6—C5—C4120.4 (2)
Mn1—O3—H3A129 (2)C6—C5—H5119.8
H3B—O3—H3A110 (3)C4—C5—H5119.8
Mn1—O4—H4B127 (2)C5—C6—C7119.31 (19)
Mn1—O4—H4A119 (4)C5—C6—C8119.95 (19)
H4B—O4—H4A113 (4)C7—C6—C8120.73 (18)
Mn1—O5—H5B132 (3)C6—C7—C2120.44 (19)
Mn1—O5—H5A117 (7)C6—C7—H7119.8
H5B—O5—H5A99 (7)C2—C7—H7119.8
H6A—O6—H6B119 (5)N5—C8—N8111.01 (18)
H7A—O7—H7B120 (6)N5—C8—C6125.20 (18)
C1—N1—N2104.79 (16)N8—C8—C6123.78 (19)
C1—N1—N2—N3−0.3 (2)N4—C1—C2—C3−176.0 (2)
C1—N1—N2—Mn1−179.63 (15)N1—C1—C2—C7−177.9 (2)
O4—Mn1—N2—N3−62.82 (18)N4—C1—C2—C72.7 (3)
O1—Mn1—N2—N3118.54 (17)C7—C2—C3—C40.2 (4)
O2—Mn1—N2—N3−144.41 (18)C1—C2—C3—C4179.0 (2)
O5—Mn1—N2—N327.16 (18)C2—C3—C4—C5−0.6 (4)
O3—Mn1—N2—N1−119.2 (19)C3—C4—C5—C60.4 (4)
O4—Mn1—N2—N1116.41 (19)C4—C5—C6—C70.2 (4)
O1—Mn1—N2—N1−62.23 (19)C4—C5—C6—C8−178.7 (2)
O2—Mn1—N2—N134.82 (19)C5—C6—C7—C2−0.5 (3)
O5—Mn1—N2—N1−153.6 (2)C8—C6—C7—C2178.31 (19)
N1—N2—N3—N40.2 (2)C3—C2—C7—C60.3 (3)
Mn1—N2—N3—N4179.52 (14)C1—C2—C7—C6−178.46 (19)
N2—N3—N4—C10.1 (2)N6—N5—C8—N80.2 (2)
C8—N5—N6—N7−0.3 (2)N6—N5—C8—C6−178.4 (2)
N5—N6—N7—N80.4 (3)N7—N8—C8—N50.0 (2)
N6—N7—N8—C8−0.2 (2)N7—N8—C8—C6178.67 (19)
N2—N1—C1—N40.4 (2)C5—C6—C8—N5176.9 (2)
N2—N1—C1—C2−179.00 (19)C7—C6—C8—N5−1.9 (3)
N3—N4—C1—N1−0.3 (2)C5—C6—C8—N8−1.6 (3)
N3—N4—C1—C2179.09 (19)C7—C6—C8—N8179.6 (2)
N1—C1—C2—C33.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7B···O60.57 (6)2.31 (6)2.852 (3)162 (8)
O5—H5A···O5i0.57 (6)2.41 (5)2.910 (6)148 (9)
O6—H6B···O7ii0.61 (5)2.21 (5)2.814 (3)171 (6)
O4—H4A···O1iii0.67 (4)2.38 (4)3.035 (3)167 (5)
O3—H3A···O7i0.84 (4)1.91 (4)2.747 (3)171 (3)
O3—H3B···O6iv0.82 (3)1.98 (3)2.794 (3)176 (3)
O2—H2B···N1v0.75 (3)2.06 (3)2.800 (3)173 (3)
O1—H1B···N6vi0.85 (4)1.89 (4)2.730 (3)176 (3)
O5—H5B···N8vii0.75 (4)2.07 (4)2.810 (3)168 (4)
O7—H7A···N5ii0.73 (4)2.10 (4)2.828 (3)173 (4)
O4—H4B···N3iv0.88 (4)1.80 (4)2.681 (3)175 (3)
O6—H6A···N40.82 (3)2.07 (4)2.886 (3)176 (3)
O1—H1A···N7viii0.78 (3)1.99 (3)2.771 (3)175 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z; (iv) −x, −y+1, −z+1; (v) −x, −y+2, −z+1; (vi) x, y, z+1; (vii) x, y−1, z+1; (viii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2139).

References

  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hill, M., Mahon, M. F., McGinley, J. & Molloy, K. C. (1996). J. Chem. Soc. Dalton Trans. pp. 835–845.
  • Jiang, C., Yu, Z., Jiao, C., Wang, S., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 4669–4674.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography