PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1335.
Published online 2008 September 27. doi:  10.1107/S160053680803078X
PMCID: PMC2959463

catena-Poly[[bis­(1-methyl­imidazole-κN 3)zinc(II)]-μ-isophthalato-κ2 O 1:O 3]

Abstract

In the solid state, the title compound, [Zn(C8H4O4)(C4H6N2)2]n, exhibits the existence of polymeric zigzag chains extending along the a axis. Each ZnII ion is coordinated by two N atoms [Zn—N = 1.996 (6) and 2.032 (5) Å] and two O atoms [Zn—O = 1.930 (4) and 1.976 (4) Å] in a distorted tetra­hedral geometry. Weak C—H(...)O inter­actions contribute to the crystal packing stability.

Related literature

In the related zinc compound [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002 [triangle]), the ZnII ions also have a distorted tetra­hedral environment.

An external file that holds a picture, illustration, etc.
Object name is e-64-m1335-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H4O4)(C4H6N2)2]
  • M r = 393.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1335-efi1.jpg
  • a = 9.6820 (19) Å
  • b = 13.224 (3) Å
  • c = 26.983 (5) Å
  • V = 3454.8 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 293 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3091 measured reflections
  • 2967 independent reflections
  • 2041 reflections with I > 2σ(I)
  • R int = 0.035
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.207
  • S = 1.05
  • 2967 reflections
  • 220 parameters
  • 40 restraints
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803078X/cv2451sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803078X/cv2451Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (grant No. Y2006B12).

supplementary crystallographic information

Comment

In the title compound, (I) (Fig. 1), the zinc(II) centers are bridged by carboxylate groups of isophthalate ligands. Each ZnII ion is coordinated by two N [Zn—N2 = 1.996 (6) Å, Zn—N4 = 2.032 (5) Å] and two O [Zn—O1 = 1.930 (4) Å, Zn—O4 = 1.976 (4) Å] atoms in a distorted tetrahedral geometry. All these values agree well with those observed in [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002). Each isophthalate dianion in (I) acts as a bidentate ligand to bridge two ZnII atoms through two monodentate carboxylate groups, building a zigzag polymeric chain along the a axis. The metal–metal distance across each polymer backbone is 9.682 (7) Å.

In the crystal, weak C—H···O interactions contribute to the crystal packing stability. In the corresponding zinc compound [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002), the ZnII ions have a distorted tetrahedral environment.

Experimental

The reaction of ZnCl2(0.68 g, 5 mmol) with isophthalic acid (0.83 g, 5 mmol) in an aqueous-alcohol (3:1) solution (40 ml) at 363 K for 30 minutes produced a blue solution, to which 1-methylimidazole (0.82 g, 10 mmol) was added. The reaction solution was kept at room temperature after stirring for an hour at 333 K. Colourless crystals were obtained after a few days.

Refinement

H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
A portion of the polymeric chain in (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

[Zn(C8H4O4)(C4H6N2)2]F(000) = 1616
Mr = 393.72Dx = 1.514 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.6820 (19) Åθ = 10–14°
b = 13.224 (3) ŵ = 1.45 mm1
c = 26.983 (5) ÅT = 293 K
V = 3454.8 (12) Å3Block, colourless
Z = 80.20 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.036
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 1.5°
graphiteh = 0→11
ω scansk = 0→15
3091 measured reflectionsl = 0→32
2967 independent reflections3 standard reflections every 100 reflections
2041 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.1255P)2] where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.50 e Å3
40 restraintsΔρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.18405 (6)0.12667 (5)0.12048 (3)0.0338 (3)
N10.1883 (6)0.3348 (5)0.2326 (2)0.0594 (17)
N20.1689 (5)0.2071 (4)0.1829 (2)0.0434 (13)
N30.2381 (6)0.3608 (4)0.0199 (2)0.0461 (14)
N40.1948 (5)0.2244 (4)0.06251 (18)0.0358 (12)
O10.3326 (4)0.0294 (4)0.11870 (16)0.0460 (12)
O20.4748 (4)0.1603 (3)0.12273 (18)0.0510 (13)
O31.0442 (4)−0.0567 (4)0.1520 (2)0.0680 (16)
O4−0.0041 (4)0.0763 (3)0.10656 (16)0.0440 (11)
C10.2355 (10)0.4326 (6)0.2511 (3)0.081
H1A0.30170.46050.22840.122*
H1B0.27770.42390.28300.122*
H1C0.15810.47760.25390.122*
C20.0944 (8)0.2711 (7)0.2534 (3)0.079 (3)
H2A0.04830.27980.28330.094*
C30.0821 (8)0.1945 (7)0.2223 (3)0.071 (2)
H3A0.02290.13990.22670.086*
C40.2306 (8)0.2910 (6)0.1911 (2)0.0523 (18)
H4B0.29760.31810.17030.063*
C50.2982 (8)0.4589 (5)0.0065 (3)0.060 (2)
H5A0.37270.47450.02880.089*
H5B0.22870.51040.00890.089*
H5C0.33260.4560−0.02680.089*
C60.2723 (6)0.3054 (5)0.0588 (2)0.0408 (15)
H6A0.34270.32180.08090.049*
C70.1029 (8)0.2310 (5)0.0239 (3)0.0568 (19)
H7A0.03260.18490.01750.068*
C80.1294 (8)0.3137 (5)−0.0030 (3)0.059 (2)
H8A0.08350.3349−0.03150.070*
C90.9641 (6)−0.0064 (5)0.1281 (2)0.0361 (14)
C100.8172 (5)−0.0403 (5)0.1219 (2)0.0328 (14)
C110.7891 (7)−0.1438 (5)0.1187 (2)0.0436 (16)
H11A0.8608−0.19070.11900.052*
C120.6544 (7)−0.1755 (5)0.1151 (3)0.060 (2)
H12A0.6356−0.24430.11260.072*
C130.5473 (7)−0.1080 (5)0.1151 (3)0.0510 (18)
H13A0.4572−0.13180.11210.061*
C140.5702 (5)−0.0054 (4)0.1195 (2)0.0301 (12)
C150.7082 (5)0.0286 (4)0.1222 (2)0.0321 (13)
H15A0.72650.09750.12420.039*
C160.4545 (6)0.0702 (5)0.1210 (2)0.0340 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.0166 (4)0.0401 (4)0.0446 (5)0.0005 (3)−0.0007 (3)0.0023 (3)
N10.067 (4)0.058 (3)0.053 (3)−0.018 (3)0.016 (3)−0.013 (3)
N20.032 (3)0.056 (3)0.043 (3)−0.008 (2)0.006 (2)0.001 (2)
N30.051 (3)0.052 (3)0.035 (3)−0.008 (3)0.003 (3)0.003 (3)
N40.024 (2)0.043 (3)0.041 (3)−0.009 (2)−0.009 (2)0.006 (2)
O10.019 (2)0.057 (3)0.062 (3)0.004 (2)0.0020 (19)0.003 (2)
O20.021 (2)0.036 (2)0.096 (4)−0.0011 (19)−0.001 (2)0.004 (2)
O30.023 (2)0.075 (3)0.106 (4)−0.001 (2)−0.013 (3)0.041 (3)
O40.020 (2)0.049 (3)0.063 (3)−0.0021 (19)−0.004 (2)0.008 (2)
C10.0810.0810.0810.0000.0000.000
C20.068 (5)0.100 (6)0.068 (5)−0.024 (4)0.038 (4)−0.019 (4)
C30.064 (5)0.081 (5)0.069 (5)−0.030 (4)0.031 (4)−0.006 (4)
C40.052 (4)0.071 (4)0.033 (3)−0.010 (3)0.015 (3)−0.005 (3)
C50.069 (5)0.054 (4)0.056 (5)−0.010 (4)0.008 (4)0.004 (4)
C60.034 (3)0.051 (4)0.037 (4)−0.006 (3)0.001 (3)0.003 (3)
C70.053 (4)0.054 (4)0.063 (5)−0.009 (4)−0.017 (4)0.005 (4)
C80.061 (5)0.060 (5)0.054 (5)−0.004 (4)−0.017 (4)0.017 (4)
C90.017 (3)0.046 (3)0.045 (4)0.006 (3)0.000 (3)−0.007 (3)
C100.011 (3)0.054 (4)0.033 (3)−0.002 (2)0.002 (2)0.005 (3)
C110.026 (3)0.041 (4)0.064 (4)0.005 (3)−0.006 (3)−0.007 (3)
C120.029 (4)0.031 (3)0.119 (7)−0.006 (3)−0.005 (4)−0.006 (4)
C130.024 (3)0.042 (4)0.087 (5)−0.005 (3)−0.002 (3)−0.007 (3)
C140.015 (3)0.037 (3)0.038 (3)0.002 (2)−0.004 (2)0.001 (3)
C150.017 (3)0.034 (3)0.046 (4)−0.001 (2)−0.002 (2)0.005 (3)
C160.012 (3)0.049 (4)0.041 (3)0.001 (3)0.001 (2)0.008 (3)

Geometric parameters (Å, °)

Zn—O11.930 (4)C3—H3A0.9300
Zn—O41.976 (4)C4—H4B0.9300
Zn—N21.996 (6)C5—H5A0.9600
Zn—N42.032 (5)C5—H5B0.9600
N1—C41.327 (8)C5—H5C0.9600
N1—C21.360 (9)C6—H6A0.9300
N1—C11.459 (10)C7—C81.339 (9)
N2—C41.279 (8)C7—H7A0.9300
N2—C31.367 (8)C8—H8A0.9300
N3—C61.322 (8)C9—O4ii1.277 (8)
N3—C81.371 (9)C9—C101.501 (7)
N3—C51.468 (8)C10—C151.395 (8)
N4—C61.311 (7)C10—C111.399 (9)
N4—C71.372 (8)C11—C121.373 (8)
O1—C161.299 (7)C11—H11A0.9300
O2—C161.209 (8)C12—C131.368 (9)
O3—C91.207 (7)C12—H12A0.9300
O4—C9i1.277 (8)C13—C141.381 (8)
C1—H1A0.9600C13—H13A0.9300
C1—H1B0.9600C14—C151.411 (7)
C1—H1C0.9600C14—C161.502 (8)
C2—C31.319 (11)C15—H15A0.9300
C2—H2A0.9300
O1—Zn—O4117.23 (19)H5A—C5—H5B109.5
O1—Zn—N2115.5 (2)N3—C5—H5C109.5
O4—Zn—N2105.80 (19)H5A—C5—H5C109.5
O1—Zn—N4111.51 (19)H5B—C5—H5C109.5
O4—Zn—N496.63 (18)N4—C6—N3111.7 (6)
N2—Zn—N4108.3 (2)N4—C6—H6A124.2
C4—N1—C2106.5 (6)N3—C6—H6A124.2
C4—N1—C1125.3 (7)C8—C7—N4109.9 (6)
C2—N1—C1128.2 (7)C8—C7—H7A125.1
C4—N2—C3104.9 (6)N4—C7—H7A125.1
C4—N2—Zn125.0 (5)C7—C8—N3105.8 (6)
C3—N2—Zn129.6 (5)C7—C8—H8A127.1
C6—N3—C8107.4 (5)N3—C8—H8A127.1
C6—N3—C5125.9 (6)O3—C9—O4ii124.1 (6)
C8—N3—C5126.5 (6)O3—C9—C10120.2 (6)
C6—N4—C7105.2 (5)O4ii—C9—C10115.7 (5)
C6—N4—Zn127.4 (4)C15—C10—C11119.5 (5)
C7—N4—Zn126.2 (4)C15—C10—C9121.5 (6)
C16—O1—Zn113.5 (4)C11—C10—C9118.9 (5)
C9i—O4—Zn115.1 (4)C12—C11—C10119.2 (6)
N1—C1—H1A109.5C12—C11—H11A120.4
N1—C1—H1B109.5C10—C11—H11A120.4
H1A—C1—H1B109.5C13—C12—C11121.4 (6)
N1—C1—H1C109.5C13—C12—H12A119.3
H1A—C1—H1C109.5C11—C12—H12A119.3
H1B—C1—H1C109.5C12—C13—C14121.2 (6)
C3—C2—N1105.9 (7)C12—C13—H13A119.4
C3—C2—H2A127.0C14—C13—H13A119.4
N1—C2—H2A127.0C13—C14—C15118.0 (5)
C2—C3—N2110.2 (7)C13—C14—C16122.4 (5)
C2—C3—H3A124.9C15—C14—C16119.5 (5)
N2—C3—H3A124.9C10—C15—C14120.5 (5)
N2—C4—N1112.4 (6)C10—C15—H15A119.7
N2—C4—H4B123.8C14—C15—H15A119.7
N1—C4—H4B123.8O2—C16—O1124.0 (6)
N3—C5—H5A109.5O2—C16—C14122.4 (5)
N3—C5—H5B109.5O1—C16—C14113.6 (5)
O1—Zn—N2—C489.0 (6)Zn—N4—C6—N3−169.7 (4)
O4—Zn—N2—C4−139.6 (6)C8—N3—C6—N40.9 (8)
N4—Zn—N2—C4−36.9 (6)C5—N3—C6—N4176.2 (6)
O1—Zn—N2—C3−100.1 (7)C6—N4—C7—C81.9 (8)
O4—Zn—N2—C331.4 (7)Zn—N4—C7—C8170.1 (5)
N4—Zn—N2—C3134.1 (7)N4—C7—C8—N3−1.4 (9)
O1—Zn—N4—C6−81.7 (5)C6—N3—C8—C70.3 (9)
O4—Zn—N4—C6155.6 (5)C5—N3—C8—C7−175.0 (6)
N2—Zn—N4—C646.5 (6)O3—C9—C10—C15141.9 (7)
O1—Zn—N4—C7112.7 (6)O4ii—C9—C10—C15−38.6 (9)
O4—Zn—N4—C7−10.0 (6)O3—C9—C10—C11−34.3 (9)
N2—Zn—N4—C7−119.1 (6)O4ii—C9—C10—C11145.2 (6)
O4—Zn—O1—C16170.5 (4)C15—C10—C11—C121.0 (10)
N2—Zn—O1—C16−63.7 (4)C9—C10—C11—C12177.3 (6)
N4—Zn—O1—C1660.4 (4)C10—C11—C12—C13−0.7 (12)
O1—Zn—O4—C9i44.5 (5)C11—C12—C13—C14−1.0 (12)
N2—Zn—O4—C9i−86.0 (4)C12—C13—C14—C152.4 (11)
N4—Zn—O4—C9i162.9 (4)C12—C13—C14—C16−178.4 (6)
C4—N1—C2—C3−2.1 (10)C11—C10—C15—C140.3 (9)
C1—N1—C2—C3177.6 (8)C9—C10—C15—C14−175.9 (5)
N1—C2—C3—N21.5 (11)C13—C14—C15—C10−2.0 (10)
C4—N2—C3—C2−0.2 (10)C16—C14—C15—C10178.7 (5)
Zn—N2—C3—C2−172.6 (6)Zn—O1—C16—O2−1.8 (8)
C3—N2—C4—N1−1.2 (9)Zn—O1—C16—C14−180.0 (4)
Zn—N2—C4—N1171.6 (5)C13—C14—C16—O2−176.8 (7)
C2—N1—C4—N22.1 (9)C15—C14—C16—O22.4 (9)
C1—N1—C4—N2−177.6 (7)C13—C14—C16—O11.4 (8)
C7—N4—C6—N3−1.7 (7)C15—C14—C16—O1−179.4 (5)

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O3iii0.962.553.423 (10)150
C4—H4B···O3iii0.932.313.150 (9)150
C11—H11A···O2iv0.932.543.457 (8)171

Symmetry codes: (iii) −x+3/2, y+1/2, z; (iv) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2451).

References

  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Zheng, S., Tao, J., Liu, G. & Chen, X. (2002). Aust. J. Chem.55, 741–744.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography