PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1324.
Published online 2008 September 27. doi:  10.1107/S1600536808030468
PMCID: PMC2959462

catena-Poly[[dipyridine­mercury(II)]-μ-5-amino-2,4,6-triiodo­isophthalato]

Abstract

The reaction of mercury(II) chloride with 5-amino-2,4,6-triiodo­isophthalic acid in pyridine solution leads to the formation of the title compound, [Hg(C8H2I3NO4)(C5H5N)2]n. The structure contains a four-coordinate Hg2+ ion in a distorted tetra­hedral geometry, which lies on a crystallographic twofold axis. The Hg2+ ion is bonded to two N atoms from two pyridine ligands and two carboxylate O atoms from two 5-amino-2,4,6-triiodo­isophthalate anions. The two carboxyl­ate groups of individual 5-amino-2,4,6-triiodo­isophthalate anions act as a bridge to the Hg centers. This anion also resides on a twofold axis, which passes through the amino N and the trans standing I atoms. The Hg—O distance is 2.337 (6) and the Hg—N distance is 2.244 (8) Å.

Related literature

For general background, see: Ziegler et al. (1997 [triangle]). For related structures, see: Bebout et al. (1998 [triangle]); Beck & Sheldrick (2008 [triangle]); Matković-Čalogović et al. (2002 [triangle]); Weil (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1324-scheme1.jpg

Experimental

Crystal data

  • [Hg(C8H2I3NO4)(C5H5N)2]
  • M r = 915.60
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-m1324-efi1.jpg
  • a = 11.9338 (3) Å
  • c = 16.0532 (10) Å
  • V = 2286.23 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 10.81 mm−1
  • T = 296 (2) K
  • 0.20 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.16, T max = 0.20
  • 10399 measured reflections
  • 2251 independent reflections
  • 1661 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.067
  • S = 1.06
  • 2251 reflections
  • 134 parameters
  • 57 restraints
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.53 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 897 Friedel pairs
  • Flack parameter: 0.010 (9)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030468/fj2148sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030468/fj2148Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Natural Science Foundation of Jiangsu Province Education office (No. 04KJB150015). We also to thank Dr Zaichao Zhang for his support.

supplementary crystallographic information

Comment

5-amino-2, 4, 6-triiodoisophthalic acid is the precursor of the synthesis of a wide range of contrast agents with different amide-bound aliphatic side chains, which modulate their physical and physiological properties (Ziegler et al., 1997). The crystal structure of this compound was reported very recently (Beck et al., 2008), however, there is no information about the structural characterization of its metal complexes. In the present study, the synthesis, crystal structures of the catena-[bis(pyridine)- 5-Amino-2,4,6-triiodoisophthalic acid-O,O -mercury(II)] complex is reported.

The molecular structure of title complex comprises of two crystallographically independent chains along the c-axis. In the chains, Hg atom shows a distorted tetrahedron environment with [2 N + 2O] coordination, where two nitrogen atoms originate from pyridines and two oxygen atoms from two 5-amino-2,4,6-triiodoisophthalic acid ligands. The two CO2- group of 5-Amino-2,4,6 -triiodoisophthalic acid ligand coordinated to Hg2+ and bridging Hg metal centers. The bond lengths of Hg—O in Table 1 indicate that the Hg (II) center is in a distorted. The bond lengths are and 2.337 (6)Å for Hg1—O2. There is a week interaction between Hg2+ and O1 with Hg1—O1 distance is 2.618 (6) Å The Hg—O bond lengths of this complex are close to the Hg—O bond lengths in the reported coordination polymers aqua-bromo(6-carboxypyridine-2-carboxylato –O, N, O') mercury(II) (2.425 (4)Å and 2.599 (4) Å) (Matković-Calogović et al., 2002). The bond angles O1—Hg1—O2 existing in the octahedral are 53.1 (2)°, respectively, which also demonstrate the distorted octahedron in the Hg coordination center. The bond lengths of O1—C5 and O2—C5, are 1.245 (10)Å and 1.257 (10) Å, respectively, and the bond angle of O1—C1—O2 is 125.8 (8)°. Compared with the data when the ligand has not been coordinated (Beck et al., 2008), the C—O bond lengths are lengthened and the O—C—O bond angles are slightly expanded when the carboxylate groups are coordinated to central cations. The C—I and C—N bond distances in the complex are very similar with the free ligand (Beck et al., 2008). Two pyridine ligands coordinated to every Hg center with the Hg—N bond distances 2.444 (8) Å, which are fall in the range of the Hg—N bond lengths in the reported coordination compound mercury(II) Complexes of bis[(2-pyridyl)methyl]amine (in which, the Hg—N (pyridyl) bond lengths are range from 2.352 (4)Å to 2.557 (5) Å) (Bebout, et al., 1998)and significantly longer than that in bis(pyridine-N)mercury(II) dichromate(VI)(in which, the average Hg—N distance is 2.101 Å) (Weil, 2001).

Experimental

0.27 g (1 mmol) HgCl2 was dissolved in 10 mL ethanol, 0.54 g (1 mmol) 5-amino-2, 4, 6-triiodoisophthalic acid was dissolved in 10 mL pyridine. To mix two solutions gave slightly brown solution which was stirred at room temperature for 2 h, then filtered. The filtrate was stood for several days until the well formed colorless single crystals were obtained.

Refinement

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5Ueq for methyl H atoms.

Figures

Fig. 1.
The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.

Crystal data

[Hg(C8H2I3NO4)(C5H5N)2]Dx = 2.660 Mg m3
Mr = 915.60Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 2411 reflections
Hall symbol: P 4abw 2nwθ = 2.1–25.1°
a = 11.9338 (3) ŵ = 10.81 mm1
c = 16.0532 (10) ÅT = 296 K
V = 2286.23 (16) Å3Pyramid, colorless
Z = 40.20 × 0.15 × 0.15 mm
F(000) = 1648

Data collection

Bruker SMART APEX CCD diffractometer2251 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→14
Tmin = 0.16, Tmax = 0.20k = −14→12
10399 measured reflectionsl = −19→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.067w = 1/[σ2(Fo2) + (0.0151P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2251 reflectionsΔρmax = 0.63 e Å3
134 parametersΔρmin = −0.53 e Å3
57 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.010 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.6137 (6)0.3863 (6)0.75000.036 (2)
C20.6218 (7)0.3118 (6)0.6838 (5)0.041 (2)
C30.7046 (7)0.2319 (7)0.6843 (5)0.046 (2)
C40.7809 (7)0.2191 (7)0.75000.049 (3)
C50.5357 (7)0.3173 (8)0.6152 (6)0.051 (2)
C60.4694 (10)0.1635 (9)0.4089 (8)0.097 (2)
H60.53080.18440.44100.116*
C70.4795 (12)0.0725 (11)0.3565 (8)0.112 (2)
H70.54510.03050.35490.134*
C80.3905 (11)0.0459 (11)0.3071 (9)0.118 (2)
H80.3965−0.00870.26600.142*
C90.2919 (11)0.1019 (10)0.3198 (8)0.111 (2)
H90.22640.07870.29370.133*
C100.2919 (10)0.1900 (10)0.3703 (8)0.098 (2)
H100.22660.23220.37380.118*
Hg10.37049 (3)0.37049 (3)0.50000.05760 (17)
I10.72004 (6)0.12434 (7)0.58073 (4)0.0764 (2)
I30.48846 (5)0.51154 (5)0.75000.0606 (2)
N10.8605 (6)0.1395 (6)0.75000.065 (3)
H1A0.90600.13400.79140.077*0.50
H1B0.86600.09400.70860.077*0.50
N20.3772 (8)0.2212 (7)0.4151 (5)0.0831 (19)
O10.4543 (5)0.2528 (6)0.6227 (4)0.0659 (18)
O20.5496 (5)0.3874 (6)0.5577 (4)0.0669 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.033 (4)0.033 (4)0.041 (6)0.002 (5)0.006 (4)0.006 (4)
C20.041 (5)0.043 (5)0.039 (5)0.002 (4)0.011 (5)0.010 (4)
C30.045 (5)0.049 (5)0.043 (5)0.002 (4)−0.002 (4)0.000 (4)
C40.042 (4)0.042 (4)0.062 (8)0.009 (6)0.004 (5)0.004 (5)
C50.039 (5)0.062 (6)0.051 (6)0.008 (3)−0.003 (4)−0.008 (5)
C60.091 (5)0.089 (5)0.111 (5)0.019 (4)−0.038 (4)−0.034 (4)
C70.104 (5)0.099 (5)0.132 (6)0.027 (4)−0.041 (4)−0.043 (4)
C80.113 (5)0.103 (5)0.138 (6)0.023 (4)−0.046 (5)−0.051 (4)
C90.103 (5)0.096 (5)0.133 (6)0.015 (4)−0.052 (5)−0.045 (4)
C100.092 (5)0.085 (5)0.117 (5)0.014 (4)−0.046 (4)−0.033 (4)
Hg10.0627 (2)0.0627 (2)0.0475 (3)0.0051 (3)−0.0068 (2)0.0068 (2)
I10.0676 (4)0.0958 (6)0.0658 (5)0.0210 (4)0.0003 (4)−0.0324 (4)
I30.0547 (3)0.0547 (3)0.0723 (6)0.0119 (4)0.0044 (3)0.0044 (3)
N10.070 (4)0.070 (4)0.053 (6)0.004 (7)−0.004 (4)−0.004 (4)
N20.081 (4)0.072 (4)0.097 (4)0.013 (3)−0.040 (4)−0.021 (3)
O10.050 (4)0.077 (5)0.071 (4)−0.001 (3)−0.017 (3)0.008 (3)
O20.068 (4)0.088 (5)0.044 (4)0.001 (4)−0.006 (3)0.020 (4)

Geometric parameters (Å, °)

C1—C2i1.389 (9)C8—C91.368 (15)
C1—I32.113 (9)C8—H80.9300
C2—C31.373 (10)C9—C101.327 (15)
C2—C51.508 (12)C9—H90.9300
C3—C41.402 (10)C10—N21.302 (12)
C3—I12.108 (8)C10—H100.9300
C4—N11.344 (14)Hg1—N22.244 (8)
C4—C3i1.402 (10)Hg1—N2ii2.244 (8)
C5—O21.257 (10)Hg1—O2ii2.337 (6)
C5—O11.245 (10)Hg1—O22.337 (6)
C5—Hg12.777 (9)Hg1—O1ii2.618 (6)
C6—N21.302 (12)Hg1—O12.618 (6)
C6—C71.379 (15)Hg1—C5ii2.777 (9)
C6—H60.9300N1—H1A0.8600
C7—C81.363 (15)N1—H1B0.8600
C7—H70.9300
C2i—C1—C2119.7 (9)N2ii—Hg1—O2ii106.0 (3)
C2i—C1—I3120.2 (5)N2—Hg1—O2106.0 (3)
C2—C1—I3120.2 (5)N2ii—Hg1—O2118.8 (3)
C3—C2—C1119.4 (8)O2ii—Hg1—O289.9 (3)
C3—C2—C5121.6 (8)N2—Hg1—O1ii82.3 (2)
C1—C2—C5118.9 (7)N2ii—Hg1—O1ii91.0 (3)
C2—C3—C4123.1 (8)O2ii—Hg1—O1ii53.1 (2)
C2—C3—I1118.8 (6)O2—Hg1—O1ii139.1 (2)
C4—C3—I1118.1 (6)N2—Hg1—O191.0 (3)
N1—C4—C3i122.4 (5)N2ii—Hg1—O182.3 (2)
N1—C4—C3122.4 (5)O2ii—Hg1—O1139.1 (2)
C3i—C4—C3115.2 (10)O2—Hg1—O153.1 (2)
O2—C5—O1125.8 (8)O1ii—Hg1—O1167.5 (3)
O2—C5—C2118.4 (8)N2—Hg1—C5101.4 (3)
O1—C5—C2115.8 (8)N2ii—Hg1—C599.6 (3)
O2—C5—Hg156.8 (4)O2ii—Hg1—C5114.3 (3)
O1—C5—Hg169.6 (5)O2—Hg1—C526.7 (2)
C2—C5—Hg1168.6 (6)O1ii—Hg1—C5165.8 (3)
N2—C6—C7122.5 (12)O1—Hg1—C526.5 (2)
N2—C6—H6118.7N2—Hg1—C5ii99.6 (3)
C7—C6—H6118.7N2ii—Hg1—C5ii101.4 (3)
C6—C7—C8118.0 (13)O2ii—Hg1—C5ii26.7 (2)
C6—C7—H7121.0O2—Hg1—C5ii114.3 (3)
C8—C7—H7121.0O1ii—Hg1—C5ii26.5 (2)
C9—C8—C7118.0 (12)O1—Hg1—C5ii165.8 (3)
C9—C8—H8121.0C5—Hg1—C5ii140.2 (4)
C7—C8—H8121.0C4—N1—H1A120.0
C10—C9—C8118.5 (12)C4—N1—H1B120.0
C10—C9—H9120.7H1A—N1—H1B120.0
C8—C9—H9120.7C6—N2—C10117.8 (10)
N2—C10—C9124.4 (12)C6—N2—Hg1119.8 (7)
N2—C10—H10117.8C10—N2—Hg1122.4 (7)
C9—C10—H10117.8C5—O1—Hg183.9 (5)
N2—Hg1—N2ii115.2 (5)C5—O2—Hg196.5 (5)
N2—Hg1—O2ii118.8 (3)

Symmetry codes: (i) −y+1, −x+1, −z+3/2; (ii) y, x, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2148).

References

  • Bebout, D. C., DeLanoy, A. E., Ehmann, D. E., Kastner, M. E., Parrish, D. A. & Butcher, R. J. (1998). Inorg. Chem. 37, 2952–2959.
  • Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286. [PMC free article] [PubMed]
  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Matković-Čalogović, D., Popović, J., Popović, Z., Picek, I. & Soldin, Ž. (2002). Acta Cryst. C58, m39–m40. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weil, M. (2001). Acta Cryst. E57, m322–m324.
  • Ziegler, M., Schulze-Karal, C., Steiof, M. & Rüden, H. (1997). Korrespondenz. Abwasser 44, 1404–1408.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography