PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1336.
Published online 2008 September 27. doi:  10.1107/S1600536808030766
PMCID: PMC2959459

Tetrakis(μ-2-chloro­benzoato-κ2 O:O′)bis­[(4-vinyl­pyridine-κN)copper(II)]

Abstract

The title compound, [Cu2(C7H4ClO2)4(C7H7N)2], consists of centrosymmetric dinuclear mol­ecules with a Cu(...)Cu separation of 2.6676 (12) Å. In the mol­ecule, four 2-chloro­benzoate anions bridge two CuII ions, while two neutral 4-vinyl­pyridine ligands coordinate them in axial positions. The CuII ion has a distorted square-planar pyramidal coordination, with four O atoms from the chlorobenzoate anions at the base. The N pyridine atom completes the coordination environment in the apical position.

Related literature

In the corresponding dinuclear compound [tetra­kis(μ2-acetato)bis­(2-anilinopyridine)dicopper(II)] (Seco et al., 2002 [triangle]), the CuII has a distorted square-planar pyramidal coordination environment.

An external file that holds a picture, illustration, etc.
Object name is e-64-m1336-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H4ClO2)4(C7H7N)2]
  • M r = 959.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1336-efi1.jpg
  • a = 10.251 (2) Å
  • b = 20.412 (4) Å
  • c = 10.665 (2) Å
  • β = 111.99 (3)°
  • V = 2069.2 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 297 (2) K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.677, T max = 0.767
  • 3708 measured reflections
  • 3689 independent reflections
  • 2587 reflections with I > 2σ(I)
  • R int = 0.029
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.166
  • S = 1.00
  • 3689 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030766/cv2452sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030766/cv2452Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (grant No. Y2006B12).

supplementary crystallographic information

Comment

The title compound, (I) (Fig. 1), consists of centrosymmetric dinuclear units, in which four 2-chlorobenzoato groups bridge the two copper ions and a 4-vinylpyridine neutral ligand occupies the axis position of each copper atom, coordinating them through the nitrogen atom. Each copper ion has a distorted square-planar pyramidal coordination, with four oxygen atoms in a plane. The distances for Cu—O1,O2,O3 and O4 are 1.975 (4), 1.957 (4), 1.969 (3) and 1.985 (3) Å, respectively. The fifth coordination position is occupied by the pyridine nitrogen, N, of a ligand molecule at 2.134 (4) Å. All these values agree well with those observed in [Cu2(υ-OOCCH3)4(PhNHpy)2] (PhNHpy is 2-anilinopyridine) (Seco et al., 2002). The Cu···Cu separation in (I) is 2.6473 (12) Å.

Experimental

A solution of 4-vinylpyridine (1.05 g, 10 mmol) in alcohol (10 ml) was added to a solution of CuCl2.2H2O (1.70 g, 10 mmol) and 2-chlorobebziuc acid (1.56 g, 10 mmol) and KOH (0.56 g, 10 mmol) in alcohol (40 ml). The solution was stirred during 2 h and a precipitate was formed. The blue precipitate was filtered off, washed with alcohol and dried in vacuo over CaCO3. Blue crystals were obtained from recrystallization in alcohol after a few days.

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y, 3-z).

Crystal data

[Cu2(C7H4ClO2)4(C7H7N)2]F(000) = 972
Mr = 959.58Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.251 (2) Åθ = 10–14°
b = 20.412 (4) ŵ = 1.34 mm1
c = 10.665 (2) ÅT = 297 K
β = 111.99 (3)°Block, blue
V = 2069.2 (8) Å30.30 × 0.30 × 0.20 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer2587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
graphiteθmax = 25.2°, θmin = 2.0°
ω scansh = −12→11
Absorption correction: ψ scan (North et al., 1968)k = 0→24
Tmin = 0.677, Tmax = 0.767l = 0→12
3708 measured reflections3 standard reflections every 100 reflections
3689 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
3689 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu−0.05229 (6)0.05461 (3)1.53164 (6)0.0465 (2)
N1−0.1437 (4)0.1341 (2)1.5999 (4)0.0483 (9)
Cl10.52811 (19)−0.03630 (12)1.6765 (3)0.1233 (9)
Cl20.2716 (2)0.17779 (10)1.41176 (18)0.0975 (6)
O1−0.2292 (4)0.0228 (2)1.3923 (4)0.0691 (10)
O20.1417 (4)0.0684 (2)1.6572 (4)0.0707 (11)
O3−0.0022 (4)0.09641 (17)1.3891 (4)0.0610 (9)
O4−0.0849 (4)−0.00570 (19)1.6630 (3)0.0634 (10)
C1−0.4145 (9)0.2796 (5)1.8136 (7)0.119 (3)
H1A−0.46280.24011.80180.142*
H1B−0.44240.31511.85220.142*
C2−0.3097 (7)0.2851 (3)1.7770 (5)0.0787 (18)
H2A−0.26380.32531.79030.094*
C3−0.2568 (6)0.2323 (3)1.7152 (5)0.0568 (13)
C4−0.3184 (6)0.1719 (3)1.6807 (5)0.0604 (13)
H4A−0.40070.16271.69470.072*
C5−0.2598 (5)0.1244 (3)1.6253 (5)0.0561 (12)
H5A−0.30360.08371.60500.067*
C6−0.0865 (5)0.1938 (3)1.6306 (5)0.0604 (13)
H6A−0.00620.20271.61260.072*
C7−0.1379 (6)0.2424 (3)1.6864 (5)0.0693 (15)
H7A−0.09240.28271.70540.083*
C80.5064 (9)0.1132 (5)1.9717 (8)0.125 (3)
H8A0.50430.14442.03440.151*
C90.3825 (7)0.0961 (4)1.8658 (6)0.094 (2)
H9A0.29910.11731.85640.113*
C100.3818 (5)0.0475 (3)1.7737 (5)0.0560 (13)
C110.5093 (6)0.0209 (3)1.7889 (6)0.0678 (15)
C120.6323 (7)0.0384 (4)1.8922 (8)0.095 (2)
H12A0.71680.01891.89960.114*
C130.6297 (8)0.0848 (5)1.9844 (8)0.114 (3)
H13A0.71220.09672.05500.137*
C140.2409 (5)0.0288 (3)1.6714 (5)0.0540 (12)
C150.1325 (8)0.1677 (4)1.0103 (8)0.091 (2)
H15A0.14700.19020.94080.109*
C160.2011 (7)0.1873 (3)1.1424 (7)0.0791 (18)
H16A0.26220.22291.16250.095*
C170.1783 (6)0.1538 (3)1.2444 (6)0.0643 (14)
C180.0894 (5)0.1012 (2)1.2185 (5)0.0495 (11)
C190.0226 (6)0.0818 (3)1.0849 (5)0.0713 (15)
H19A−0.03740.04581.06400.086*
C200.0454 (7)0.1163 (4)0.9819 (6)0.091 (2)
H20A−0.00060.10340.89240.109*
C210.0558 (5)0.0649 (3)1.3239 (5)0.0488 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0445 (3)0.0547 (4)0.0436 (3)0.0030 (3)0.0201 (2)−0.0043 (3)
N10.045 (2)0.059 (2)0.045 (2)0.0024 (18)0.0206 (18)0.0000 (19)
Cl10.0601 (10)0.1388 (18)0.160 (2)0.0017 (10)0.0292 (12)−0.0630 (16)
Cl20.0979 (12)0.1124 (14)0.0906 (12)−0.0378 (11)0.0451 (10)−0.0404 (11)
O10.049 (2)0.093 (3)0.057 (2)0.000 (2)0.0117 (17)−0.010 (2)
O20.053 (2)0.076 (3)0.075 (3)0.0039 (19)0.0150 (19)−0.024 (2)
O30.073 (2)0.056 (2)0.069 (2)0.0110 (18)0.044 (2)0.0070 (18)
O40.084 (3)0.064 (2)0.056 (2)0.0137 (19)0.041 (2)0.0100 (18)
C10.120 (7)0.134 (7)0.104 (6)0.044 (6)0.044 (5)−0.036 (5)
C20.094 (5)0.082 (4)0.049 (3)0.026 (4)0.014 (3)−0.011 (3)
C30.063 (3)0.063 (3)0.040 (3)0.013 (3)0.014 (2)−0.001 (2)
C40.056 (3)0.069 (4)0.062 (3)0.008 (3)0.030 (3)−0.002 (3)
C50.060 (3)0.052 (3)0.060 (3)−0.002 (2)0.028 (3)−0.008 (2)
C60.056 (3)0.054 (3)0.073 (4)−0.006 (2)0.026 (3)−0.004 (3)
C70.077 (4)0.058 (3)0.063 (4)−0.002 (3)0.015 (3)−0.011 (3)
C80.089 (5)0.182 (10)0.089 (5)−0.022 (6)0.015 (4)−0.063 (6)
C90.061 (4)0.140 (7)0.073 (4)−0.009 (4)0.015 (3)−0.037 (4)
C100.051 (3)0.069 (4)0.045 (3)−0.005 (2)0.014 (2)0.004 (2)
C110.058 (3)0.071 (4)0.068 (4)−0.005 (3)0.017 (3)0.000 (3)
C120.051 (3)0.128 (6)0.090 (5)−0.007 (4)0.007 (3)−0.013 (5)
C130.075 (5)0.161 (8)0.083 (5)−0.017 (5)0.002 (4)−0.030 (5)
C140.053 (3)0.074 (3)0.040 (3)−0.007 (3)0.023 (2)0.000 (3)
C150.081 (5)0.114 (6)0.092 (5)0.017 (4)0.048 (4)0.039 (5)
C160.081 (4)0.075 (4)0.097 (5)−0.001 (3)0.051 (4)0.017 (4)
C170.061 (3)0.074 (4)0.068 (4)0.004 (3)0.037 (3)0.001 (3)
C180.048 (3)0.056 (3)0.049 (3)0.007 (2)0.023 (2)0.006 (2)
C190.066 (3)0.096 (4)0.047 (3)−0.002 (3)0.015 (3)0.002 (3)
C200.085 (5)0.131 (6)0.051 (4)0.010 (5)0.017 (3)0.021 (4)
C210.038 (2)0.066 (4)0.043 (3)0.003 (2)0.015 (2)0.004 (2)

Geometric parameters (Å, °)

Cu—O21.958 (4)C7—H7A0.9300
Cu—O31.971 (3)C8—C131.350 (12)
Cu—O11.975 (4)C8—C91.392 (10)
Cu—O41.985 (3)C8—H8A0.9300
Cu—N12.134 (4)C9—C101.393 (8)
Cu—Cui2.6676 (12)C9—H9A0.9300
N1—C51.331 (6)C10—C111.368 (8)
N1—C61.339 (6)C10—C141.497 (7)
Cl1—C111.735 (6)C11—C121.375 (8)
Cl2—C171.750 (6)C12—C131.372 (11)
O1—C14i1.236 (6)C12—H12A0.9300
O2—C141.262 (6)C13—H13A0.9300
O3—C211.250 (6)C14—O1i1.236 (6)
O4—C21i1.240 (6)C15—C201.336 (10)
C1—C21.279 (10)C15—C161.378 (10)
C1—H1A0.9300C15—H15A0.9300
C1—H1B0.9300C16—C171.377 (8)
C2—C31.469 (7)C16—H16A0.9300
C2—H2A0.9300C17—C181.369 (7)
C3—C41.372 (8)C18—C191.388 (7)
C3—C71.379 (8)C18—C211.489 (6)
C4—C51.383 (7)C19—C201.397 (8)
C4—H4A0.9300C19—H19A0.9300
C5—H5A0.9300C20—H20A0.9300
C6—C71.359 (7)C21—O4i1.240 (6)
C6—H6A0.9300
O2—Cu—O388.52 (17)C13—C8—C9120.6 (8)
O2—Cu—O1166.73 (16)C13—C8—H8A119.7
O3—Cu—O189.60 (16)C9—C8—H8A119.7
O2—Cu—O490.15 (17)C8—C9—C10120.9 (7)
O3—Cu—O4166.87 (14)C8—C9—H9A119.6
O1—Cu—O488.70 (17)C10—C9—H9A119.6
O2—Cu—N196.94 (15)C11—C10—C9116.5 (5)
O3—Cu—N1102.02 (14)C11—C10—C14127.1 (5)
O1—Cu—N196.30 (16)C9—C10—C14116.4 (5)
O4—Cu—N191.12 (15)C10—C11—C12122.7 (6)
O2—Cu—Cui83.76 (11)C10—C11—Cl1122.3 (4)
O3—Cu—Cui85.49 (10)C12—C11—Cl1115.0 (5)
O1—Cu—Cui83.00 (12)C13—C12—C11119.7 (7)
O4—Cu—Cui81.38 (11)C13—C12—H12A120.1
N1—Cu—Cui172.47 (11)C11—C12—H12A120.1
C5—N1—C6115.5 (4)C8—C13—C12119.5 (7)
C5—N1—Cu119.7 (3)C8—C13—H13A120.2
C6—N1—Cu124.6 (3)C12—C13—H13A120.2
C14i—O1—Cu124.5 (4)O1i—C14—O2124.9 (5)
C14—O2—Cu123.8 (4)O1i—C14—C10119.1 (5)
C21—O3—Cu121.5 (3)O2—C14—C10116.0 (5)
C21i—O4—Cu126.0 (3)C20—C15—C16120.2 (6)
C2—C1—H1A120.0C20—C15—H15A119.9
C2—C1—H1B120.0C16—C15—H15A119.9
H1A—C1—H1B120.0C17—C16—C15119.4 (6)
C1—C2—C3124.5 (8)C17—C16—H16A120.3
C1—C2—H2A117.8C15—C16—H16A120.3
C3—C2—H2A117.8C18—C17—C16121.9 (6)
C4—C3—C7115.5 (5)C18—C17—Cl2119.6 (4)
C4—C3—C2124.8 (5)C16—C17—Cl2118.5 (5)
C7—C3—C2119.7 (6)C17—C18—C19117.8 (5)
C3—C4—C5121.0 (5)C17—C18—C21124.3 (5)
C3—C4—H4A119.5C19—C18—C21117.9 (5)
C5—C4—H4A119.5C18—C19—C20120.0 (6)
N1—C5—C4123.0 (5)C18—C19—H19A120.0
N1—C5—H5A118.5C20—C19—H19A120.0
C4—C5—H5A118.5C15—C20—C19120.8 (7)
N1—C6—C7124.4 (5)C15—C20—H20A119.6
N1—C6—H6A117.8C19—C20—H20A119.6
C7—C6—H6A117.8O4i—C21—O3125.6 (4)
C6—C7—C3120.5 (5)O4i—C21—C18117.1 (4)
C6—C7—H7A119.7O3—C21—C18117.2 (4)
C3—C7—H7A119.7
O2—Cu—N1—C5−132.2 (4)C4—C3—C7—C6−1.5 (8)
O3—Cu—N1—C5137.8 (4)C2—C3—C7—C6179.3 (5)
O1—Cu—N1—C546.9 (4)C13—C8—C9—C102.6 (15)
O4—Cu—N1—C5−41.9 (4)C8—C9—C10—C11−3.5 (11)
O3—Cu—N1—C6−47.9 (4)C8—C9—C10—C14174.7 (7)
O1—Cu—N1—C6−138.8 (4)C9—C10—C11—C122.6 (9)
O4—Cu—N1—C6132.4 (4)C14—C10—C11—C12−175.4 (6)
O2—Cu—O1—C14i4.6 (10)C9—C10—C11—Cl1−175.9 (5)
O3—Cu—O1—C14i86.4 (4)C14—C10—C11—Cl16.1 (8)
O4—Cu—O1—C14i−80.5 (4)C10—C11—C12—C13−0.5 (12)
N1—Cu—O1—C14i−171.5 (4)Cl1—C11—C12—C13178.0 (7)
Cui—Cu—O1—C14i0.9 (4)C9—C8—C13—C12−0.4 (16)
O3—Cu—O2—C14−86.8 (4)C11—C12—C13—C8−0.6 (14)
O1—Cu—O2—C14−4.8 (10)Cu—O2—C14—O1i0.8 (8)
O4—Cu—O2—C1480.2 (4)Cu—O2—C14—C10−179.3 (3)
N1—Cu—O2—C14171.3 (4)C11—C10—C14—O1i14.1 (8)
Cui—Cu—O2—C14−1.1 (4)C9—C10—C14—O1i−163.9 (6)
O2—Cu—O3—C2182.9 (4)C11—C10—C14—O2−165.8 (6)
O1—Cu—O3—C21−84.0 (4)C9—C10—C14—O216.2 (7)
O4—Cu—O3—C21−1.4 (9)C20—C15—C16—C17−0.3 (11)
N1—Cu—O3—C21179.7 (4)C15—C16—C17—C180.1 (9)
Cui—Cu—O3—C21−1.0 (4)C15—C16—C17—Cl2177.6 (5)
O2—Cu—O4—C21i−84.4 (4)C16—C17—C18—C190.6 (8)
O3—Cu—O4—C21i−0.3 (10)Cl2—C17—C18—C19−176.9 (4)
O1—Cu—O4—C21i82.4 (4)C16—C17—C18—C21−177.2 (5)
N1—Cu—O4—C21i178.6 (4)Cl2—C17—C18—C215.3 (7)
Cui—Cu—O4—C21i−0.8 (4)C17—C18—C19—C20−1.0 (8)
C1—C2—C3—C44.6 (10)C21—C18—C19—C20176.9 (5)
C1—C2—C3—C7−176.3 (7)C16—C15—C20—C19−0.1 (11)
C7—C3—C4—C52.2 (8)C18—C19—C20—C150.8 (10)
C2—C3—C4—C5−178.6 (5)Cu—O3—C21—O4i1.9 (7)
C6—N1—C5—C4−0.5 (7)Cu—O3—C21—C18−179.9 (3)
Cu—N1—C5—C4174.3 (4)C17—C18—C21—O4i−120.3 (6)
C3—C4—C5—N1−1.3 (8)C19—C18—C21—O4i61.9 (6)
C5—N1—C6—C71.2 (8)C17—C18—C21—O361.3 (7)
Cu—N1—C6—C7−173.3 (4)C19—C18—C21—O3−116.5 (6)
N1—C6—C7—C3−0.2 (9)

Symmetry codes: (i) −x, −y, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2452).

References

  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta. Cryst. A24, 351–359.
  • Seco, J. M., Gonzàlez Garmendia, M. J., Pinilla, E. & Torres, M. R. (2002). Polyhedron, 21, 457–464.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography