PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2048.
Published online 2008 September 30. doi:  10.1107/S1600536808030900
PMCID: PMC2959458

N′-(5-Bromo-2-methoxy­benzyl­idene)-2-hydroxy­benzohydrazide

Abstract

The title Schiff base compound, C15H13BrN2O3, is derived from the condensation of 5-bromo-2-methoxy­benzaldehyde with 2-hydroxy­benzohydrazide in an ethanol solution. The dihedral angle between the two aromatic rings is 6.9 (9)°. The meth­oxy group is coplanar with the attached ring [C—O—C—C = 3.1 (12)°]. An intra­molecular N—H(...)O hydrogen bond is observed. In the crystal structure, the mol­ecules are linked into chains along the [001] direction by inter­molecular O—H(...)N, O—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For related structures, see: Lu et al. (2008a [triangle],b [triangle],c [triangle]); Nie (2008 [triangle]); He (2008 [triangle]); Shi et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2048-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O3
  • M r = 349.18
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-o2048-efi1.jpg
  • a = 15.530 (3) Å
  • c = 25.308 (2) Å
  • V = 6103.8 (17) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 2.70 mm−1
  • T = 298 (2) K
  • 0.12 × 0.10 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.737, T max = 0.774
  • 25116 measured reflections
  • 3322 independent reflections
  • 1243 reflections with I > 2σ(I)
  • R int = 0.128

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.226
  • S = 0.99
  • 3322 reflections
  • 195 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.97 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030900/ci2679sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030900/ci2679Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Scientific Research Foundation of Shaanxi University of Technology for financial support (project No. SLGQD0708).

supplementary crystallographic information

Comment

As part of our investigation of the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b,c), we report here the crystal structure of the title new Schiff base compound.

In the title molecule (Fig. 1), the bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Nie, 2008; He, 2008; Shi et al., 2007). The methoxy group is coplanar with the attached ring [C15—O1—C2—C3 = 3.1 (12)°]. The dihedral angle between the two aromatic rings is 6.9 (9)°, indicating that the molecule is approximately planar. An intramolecular N—H···O hydrogen bond is observed in the molecule (Table 1).

In the crystal structure, the molecules are linked into chains (Fig. 2) along the [001] by intermolecular O—H···N, O—H···O and C—H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared by the Schiff base condensation of 5-bromo-2-methoxybenzaldehyde (0.1 mol) and 2-hydroxybenzohydrazide (0.1 mol) in 95% ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obatined by slow evaporation of a 95% ethanol solution at room temperature.

Refinement

The imino H atom was located in a difference map and refined with a N-H distance restraint of 0.90 (1) Å and a fixed Uiso of 0.08 Å2. The other H atoms were positioned geometrically (C-H = 0.93-0.96 Å, O-H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O). A rotating group model was used for methyl and hydroxyl groups.The ratio of observed to unique reflections is low (37%), which is due to the poor diffraction quality of the crystal.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown by a dashed line.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C15H13BrN2O3Dx = 1.520 Mg m3
Mr = 349.18Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1836 reflections
Hall symbol: -I 4adθ = 2.4–24.3°
a = 15.530 (3) ŵ = 2.70 mm1
c = 25.308 (2) ÅT = 298 K
V = 6103.8 (17) Å3Block, colourless
Z = 160.12 × 0.10 × 0.10 mm
F(000) = 2816

Data collection

Bruker APEXII CCD area-detector diffractometer3322 independent reflections
Radiation source: fine-focus sealed tube1243 reflections with I > 2σ(I)
graphiteRint = 0.128
ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −19→19
Tmin = 0.737, Tmax = 0.774k = −19→19
25116 measured reflectionsl = −32→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.226H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0861P)2 + 12.6195P] where P = (Fo2 + 2Fc2)/3
3322 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.97 e Å3
1 restraintΔρmin = −0.86 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.13353 (7)0.23636 (7)0.44885 (4)0.1335 (6)
O10.0993 (4)0.3108 (3)0.2169 (3)0.1107 (18)
O20.2734 (3)−0.0626 (3)0.28327 (15)0.0760 (13)
O30.2429 (3)−0.0129 (3)0.12353 (14)0.0729 (13)
H30.2527−0.00720.09190.109*
N10.2045 (3)0.0897 (4)0.26121 (18)0.0624 (14)
N20.2295 (4)0.0325 (3)0.22229 (18)0.0642 (14)
C10.1451 (4)0.2232 (4)0.2860 (3)0.0715 (19)
C20.1073 (5)0.3000 (6)0.2705 (4)0.090 (2)
C30.0784 (6)0.3586 (5)0.3092 (5)0.110 (3)
H3A0.05240.41010.29930.132*
C40.0888 (6)0.3391 (7)0.3611 (5)0.114 (3)
H40.07050.37800.38670.137*
C50.1251 (5)0.2647 (6)0.3760 (4)0.096 (3)
C60.1538 (5)0.2065 (4)0.3385 (3)0.080 (2)
H60.17940.15540.34930.095*
C70.1749 (4)0.1611 (5)0.2463 (3)0.0705 (19)
H70.17200.17440.21050.085*
C80.2622 (4)−0.0430 (4)0.2367 (2)0.0581 (16)
C90.2842 (4)−0.1056 (4)0.19439 (19)0.0512 (15)
C100.2728 (4)−0.0908 (4)0.1401 (2)0.0572 (16)
C110.2912 (4)−0.1555 (5)0.1043 (2)0.0662 (18)
H110.2822−0.14670.06840.079*
C120.3224 (5)−0.2320 (5)0.1218 (3)0.079 (2)
H120.3352−0.27520.09760.095*
C130.3354 (5)−0.2465 (5)0.1747 (3)0.084 (2)
H130.3582−0.29870.18620.100*
C140.3148 (4)−0.1842 (4)0.2101 (2)0.0687 (18)
H140.3217−0.19520.24600.082*
C150.0626 (6)0.3886 (6)0.1961 (5)0.143 (4)
H15A0.00620.39680.21070.215*
H15B0.05850.38420.15830.215*
H15C0.09850.43660.20520.215*
H20.221 (4)0.050 (4)0.1888 (9)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1547 (11)0.1402 (10)0.1057 (8)−0.0250 (7)0.0402 (6)−0.0549 (6)
O10.108 (5)0.077 (4)0.147 (6)0.014 (3)−0.005 (4)0.014 (4)
O20.113 (4)0.083 (3)0.032 (2)0.018 (3)0.002 (2)0.002 (2)
O30.107 (4)0.078 (3)0.034 (2)0.019 (3)0.007 (2)0.004 (2)
N10.081 (4)0.059 (4)0.048 (3)−0.004 (3)0.012 (3)−0.006 (3)
N20.092 (4)0.063 (4)0.038 (3)0.006 (3)0.002 (3)−0.004 (3)
C10.063 (5)0.061 (5)0.090 (6)−0.003 (4)0.013 (4)−0.004 (4)
C20.078 (5)0.073 (6)0.120 (7)−0.016 (5)0.006 (5)0.001 (6)
C30.092 (7)0.057 (5)0.181 (10)0.005 (4)0.019 (7)−0.010 (7)
C40.107 (7)0.085 (8)0.150 (10)−0.009 (6)0.036 (7)−0.034 (7)
C50.085 (6)0.075 (6)0.129 (7)−0.016 (5)0.026 (5)−0.026 (5)
C60.082 (5)0.066 (5)0.091 (6)−0.012 (4)0.020 (4)−0.025 (4)
C70.085 (5)0.065 (5)0.061 (4)−0.004 (4)0.007 (3)0.005 (4)
C80.066 (4)0.065 (5)0.043 (4)−0.007 (3)0.007 (3)−0.001 (3)
C90.061 (4)0.058 (4)0.034 (3)−0.009 (3)0.005 (3)−0.001 (3)
C100.055 (4)0.072 (5)0.045 (3)−0.005 (3)0.008 (3)−0.001 (3)
C110.074 (5)0.075 (5)0.049 (4)−0.007 (4)0.008 (3)−0.008 (4)
C120.103 (6)0.062 (5)0.073 (5)−0.007 (4)0.017 (4)−0.020 (4)
C130.116 (6)0.067 (5)0.067 (5)0.018 (4)0.015 (4)0.011 (4)
C140.089 (5)0.066 (5)0.052 (4)0.006 (4)0.013 (3)0.002 (3)
C150.109 (7)0.100 (7)0.221 (12)0.011 (6)−0.014 (7)0.048 (7)

Geometric parameters (Å, °)

Br1—C51.900 (10)C5—C61.385 (10)
O1—C21.373 (10)C6—H60.93
O1—C151.436 (9)C7—H70.93
O2—C81.230 (7)C8—C91.485 (8)
O3—C101.362 (7)C9—C141.370 (8)
O3—H30.82C9—C101.405 (7)
N1—C71.259 (7)C10—C111.383 (8)
N1—N21.381 (7)C11—C121.356 (9)
N2—C81.330 (7)C11—H110.93
N2—H20.90 (3)C12—C131.373 (10)
C1—C61.360 (10)C12—H120.93
C1—C21.386 (10)C13—C141.357 (9)
C1—C71.467 (9)C13—H130.93
C2—C31.411 (12)C14—H140.93
C3—C41.356 (13)C15—H15A0.96
C3—H3A0.93C15—H15B0.96
C4—C51.340 (12)C15—H15C0.96
C4—H40.93
C2—O1—C15120.1 (8)O2—C8—N2122.4 (5)
C10—O3—H3109.5O2—C8—C9119.7 (6)
C7—N1—N2117.0 (5)N2—C8—C9117.9 (5)
C8—N2—N1118.6 (5)C14—C9—C10118.3 (5)
C8—N2—H2125 (4)C14—C9—C8117.0 (5)
N1—N2—H2116 (4)C10—C9—C8124.7 (6)
C6—C1—C2118.7 (7)O3—C10—C11121.0 (5)
C6—C1—C7120.9 (7)O3—C10—C9119.3 (5)
C2—C1—C7120.4 (8)C11—C10—C9119.7 (6)
O1—C2—C1115.0 (8)C12—C11—C10119.7 (6)
O1—C2—C3125.4 (9)C12—C11—H11120.1
C1—C2—C3119.6 (9)C10—C11—H11120.1
C4—C3—C2119.3 (9)C11—C12—C13121.1 (6)
C4—C3—H3A120.3C11—C12—H12119.5
C2—C3—H3A120.3C13—C12—H12119.5
C5—C4—C3121.1 (9)C14—C13—C12119.4 (7)
C5—C4—H4119.5C14—C13—H13120.3
C3—C4—H4119.5C12—C13—H13120.3
C4—C5—C6120.3 (9)C13—C14—C9121.8 (6)
C4—C5—Br1120.2 (8)C13—C14—H14119.1
C6—C5—Br1119.5 (8)C9—C14—H14119.1
C1—C6—C5121.0 (8)O1—C15—H15A109.5
C1—C6—H6119.5O1—C15—H15B109.5
C5—C6—H6119.5H15A—C15—H15B109.5
N1—C7—C1119.2 (6)O1—C15—H15C109.5
N1—C7—H7120.4H15A—C15—H15C109.5
C1—C7—H7120.4H15B—C15—H15C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O30.90 (3)1.95 (5)2.606 (6)129 (5)
O3—H3···N1i0.822.563.159 (6)130
O3—H3···O2i0.821.812.590 (5)157
C6—H6···O3ii0.932.553.471 (8)174

Symmetry codes: (i) −y+1/4, x−1/4, z−1/4; (ii) y+1/4, −x+1/4, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2679).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • He, L. (2008). Acta Cryst. E64, o82. [PMC free article] [PubMed]
  • Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693. [PMC free article] [PubMed]
  • Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694. [PMC free article] [PubMed]
  • Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695. [PMC free article] [PubMed]
  • Nie, Y. (2008). Acta Cryst. E64, o471. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography