PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2014–o2015.
Published online 2008 September 27. doi:  10.1107/S1600536808030456
PMCID: PMC2959457

(E)-1-(4-Amino­phen­yl)-3-(2-chloro­phen­yl)prop-2-en-1-one

Abstract

The title compound, C15H12ClNO, a substituted chalcone, adopts an E configuration with respect to the C=C bond of the enone unit. The mol­ecule is not planar, as can be seen from the dihedral angle of 28.9 (2)° between the two rings which are twisted from each other. The enone segment of the mol­ecule is not coplanar with the chloro­phenyl ring, making a dihedral angle of 23.4 (3)° with it. The amino group is also not coplanar with the ring to which it is bound, making a dihedral angle of 35 (4)°. In the crystal structure, adjacent mol­ecules are linked by N—H(...)O inter­actions into one-dimensional infinite chains along the c axis, and are further stacked as one-dimensional zigzag chains down the b axis, forming two-dimensional extended networks parallel to the bc plane.

Related literature

For related literature on hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For bond-length data, see Allen et al. (1987 [triangle]). For related structures, see, for example: Patil et al. (2007a [triangle],b [triangle],c [triangle]). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999 [triangle]); Gu et al. (2008a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2014-scheme1.jpg

Experimental

Crystal data

  • C15H12ClNO
  • M r = 257.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2014-efi1.jpg
  • a = 22.4670 (19) Å
  • b = 3.9254 (3) Å
  • c = 14.5796 (11) Å
  • β = 107.944 (6)°
  • V = 1223.26 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 100.0 (1) K
  • 0.28 × 0.27 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.935, T max = 0.985
  • 12218 measured reflections
  • 2509 independent reflections
  • 1717 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.190
  • S = 1.13
  • 2509 reflections
  • 171 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030456/cs2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030456/cs2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. IAR and HKF thank Universiti Sains Malaysia and the Malaysian Government for FRGS research grant No. 203/PFIZIK/671064. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

supplementary crystallographic information

Comment

Chalcone derivatives exhibit fascinating nonlinear optical properties (Agrinskaya et al., 1999). Among the nonlinear optical applications, optical limiting (OL) has been particularly promising (Gu et al., 2008a; Gu, et al., 2008c). Optical limiters are devices that strongly attenuate intense optical beams while exhibiting high transmittance for low-intensity ambient light levels. This behavior has applications such as the protection of human eyes and optically sensitive equipments. Chalcone derivatives are very good candidates for optical limiting applications (Gu et al., 2008b). As a part of our crystallographic studies (Patil et al., 2007a; Patil et al., 2007b; Patil et al., 2007c), the title compound was synthesized and its crystal structure is reported.

The title compound (I, Fig 1), a substituted chalcone, adopts an E configuration with respect to the C═C bond of the enone unit. Intramolecular C—H···O and C—H···Cl hydrogen bonds involving the enone group generate S(5) ring motifs (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The molecule is not planar, with a maximum deviation from the mean plane of C1–C15/N1/O1 being -1.135 (3) Å for atom Cl1. The amino group is also not coplanar with the phenyl ring to which it is bound. The dihedral angle between the C10–C15 ring and the N1-H1N1-H2N1 plane of the NH2 group is 34.7(3.7)°. The two phenyl rings are twisted to each other with the dihedral angle of 28.9 (2)°. Adjacent molecules are linked together by N—H···O interactions (Table 1) into 1-D infinite chains along the c axis in the crystal structure (Fig. 2). Such chains are further stacked as 1-D zigzag chains down the b-axis (Fig. 3), too, to form 2-D extended networks parallel to the bc plane.

Experimental

The compound (I) was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol, 1.13 g) with p-aminoacetophenone (0.01 mol, 1.35 g) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30°). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Crystals suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement

The hydrogen atoms of the amino group were located from the difference Fourier map and refined freely. The remaining H atoms were located in the riding model approximation with C—H= 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular interactions are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed down the b-axis, showing 1-D extended chains along the c-axis, and stacking of these chains along the b-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.
Fig. 3.
The crystal packing of (I), viewed down the c-axis, showing 1-D zigzag chains along the b-axis.

Crystal data

C15H12ClNOF(000) = 536
Mr = 257.71Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2522 reflections
a = 22.4670 (19) Åθ = 2.9–30.2°
b = 3.9254 (3) ŵ = 0.30 mm1
c = 14.5796 (11) ÅT = 100 K
β = 107.944 (6)°Plate, yellow
V = 1223.26 (17) Å30.28 × 0.27 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2509 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
graphiteRint = 0.090
[var phi] and ω scansθmax = 26.5°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −28→28
Tmin = 0.935, Tmax = 0.985k = −4→4
12218 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0752P)2 + 2.4541P] where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.34916 (5)0.9235 (3)0.37527 (7)0.0286 (3)
O10.15206 (14)0.7004 (9)0.45043 (19)0.0269 (8)
N10.05603 (19)0.0034 (9)0.7731 (3)0.0191 (8)
C10.3762 (2)1.0766 (12)0.4936 (3)0.0209 (9)
C20.4360 (2)1.2147 (12)0.5233 (3)0.0253 (10)
H2A0.45941.22830.48070.030*
C30.4604 (2)1.3321 (12)0.6171 (3)0.0252 (10)
H3A0.50061.42300.63830.030*
C40.4246 (2)1.3131 (12)0.6790 (3)0.0249 (10)
H4A0.44071.39390.74170.030*
C50.3654 (2)1.1761 (12)0.6487 (3)0.0224 (10)
H5A0.34221.16670.69150.027*
C60.33907 (19)1.0500 (11)0.5547 (3)0.0190 (9)
C70.2757 (2)0.9108 (11)0.5222 (3)0.0209 (9)
H7A0.25660.89460.45600.025*
C80.24290 (19)0.8055 (11)0.5784 (3)0.0206 (10)
H8A0.26060.81780.64500.025*
C90.1783 (2)0.6678 (11)0.5372 (3)0.0199 (9)
C100.14809 (19)0.4951 (11)0.6006 (3)0.0180 (9)
C110.1771 (2)0.4548 (11)0.7004 (3)0.0195 (9)
H11A0.21720.54140.72840.023*
C120.14740 (19)0.2898 (11)0.7572 (3)0.0199 (9)
H12A0.16750.26550.82290.024*
C130.08702 (19)0.1580 (10)0.7165 (3)0.0169 (9)
C140.0572 (2)0.2036 (11)0.6173 (3)0.0187 (9)
H14A0.01680.12290.58920.022*
C150.08799 (19)0.3678 (11)0.5619 (3)0.0198 (10)
H15A0.06780.39440.49620.024*
H1N10.027 (2)−0.133 (12)0.745 (3)0.010 (11)*
H2N10.081 (2)−0.044 (11)0.827 (3)0.016 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0359 (7)0.0389 (7)0.0140 (5)−0.0011 (6)0.0120 (4)0.0004 (5)
O10.0299 (17)0.040 (2)0.0094 (14)−0.0045 (15)0.0036 (12)0.0015 (13)
N10.020 (2)0.022 (2)0.0140 (18)−0.0022 (17)0.0038 (16)0.0004 (16)
C10.030 (2)0.021 (2)0.0133 (18)0.004 (2)0.0085 (17)0.0038 (18)
C20.029 (2)0.027 (3)0.023 (2)0.001 (2)0.0129 (19)0.0079 (19)
C30.022 (2)0.024 (3)0.027 (2)−0.0013 (19)0.0033 (19)0.0067 (19)
C40.032 (3)0.024 (3)0.016 (2)−0.002 (2)0.0024 (18)0.0014 (18)
C50.027 (2)0.025 (3)0.016 (2)0.003 (2)0.0082 (17)0.0047 (18)
C60.026 (2)0.014 (2)0.0195 (19)0.0019 (18)0.0104 (17)0.0034 (17)
C70.026 (2)0.024 (2)0.0122 (18)0.006 (2)0.0053 (16)0.0012 (18)
C80.026 (2)0.023 (2)0.0130 (19)0.0019 (19)0.0060 (17)0.0011 (17)
C90.023 (2)0.024 (2)0.0130 (19)0.0029 (19)0.0054 (17)−0.0012 (17)
C100.023 (2)0.020 (2)0.0116 (18)0.0030 (18)0.0066 (16)−0.0019 (16)
C110.021 (2)0.023 (2)0.0160 (19)0.0023 (19)0.0072 (16)−0.0017 (18)
C120.026 (2)0.023 (2)0.0107 (18)0.0020 (19)0.0061 (17)−0.0018 (17)
C130.023 (2)0.015 (2)0.0150 (19)0.0039 (18)0.0097 (16)−0.0022 (16)
C140.021 (2)0.019 (2)0.0153 (19)0.0000 (18)0.0036 (16)−0.0037 (17)
C150.025 (2)0.023 (3)0.0108 (18)0.0059 (19)0.0052 (16)0.0012 (17)

Geometric parameters (Å, °)

Cl1—C11.749 (4)C7—C81.325 (6)
O1—C91.226 (5)C7—H7A0.9300
N1—C131.374 (5)C8—C91.491 (6)
N1—H1N10.84 (5)C8—H8A0.9300
N1—H2N10.83 (5)C9—C101.471 (6)
C1—C21.389 (6)C10—C151.386 (6)
C1—C61.400 (5)C10—C111.408 (5)
C2—C31.387 (6)C11—C121.376 (6)
C2—H2A0.9300C11—H11A0.9300
C3—C41.384 (6)C12—C131.401 (6)
C3—H3A0.9300C12—H12A0.9300
C4—C51.375 (6)C13—C141.405 (5)
C4—H4A0.9300C14—C151.375 (6)
C5—C61.404 (6)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.461 (6)
C13—N1—H1N1116 (3)C7—C8—C9121.4 (4)
C13—N1—H2N1111 (3)C7—C8—H8A119.3
H1N1—N1—H2N1120 (4)C9—C8—H8A119.3
C2—C1—C6122.7 (4)O1—C9—C10121.9 (4)
C2—C1—Cl1116.8 (3)O1—C9—C8118.5 (4)
C6—C1—Cl1120.6 (3)C10—C9—C8119.6 (3)
C3—C2—C1119.2 (4)C15—C10—C11117.6 (4)
C3—C2—H2A120.4C15—C10—C9119.3 (3)
C1—C2—H2A120.4C11—C10—C9123.0 (4)
C4—C3—C2119.5 (4)C12—C11—C10121.2 (4)
C4—C3—H3A120.3C12—C11—H11A119.4
C2—C3—H3A120.3C10—C11—H11A119.4
C5—C4—C3120.7 (4)C11—C12—C13120.4 (4)
C5—C4—H4A119.6C11—C12—H12A119.8
C3—C4—H4A119.6C13—C12—H12A119.8
C4—C5—C6121.7 (4)N1—C13—C12120.8 (4)
C4—C5—H5A119.1N1—C13—C14120.4 (4)
C6—C5—H5A119.1C12—C13—C14118.7 (4)
C1—C6—C5116.1 (4)C15—C14—C13119.9 (4)
C1—C6—C7122.2 (4)C15—C14—H14A120.0
C5—C6—C7121.6 (4)C13—C14—H14A120.0
C8—C7—C6126.0 (4)C14—C15—C10122.2 (4)
C8—C7—H7A117.0C14—C15—H15A118.9
C6—C7—H7A117.0C10—C15—H15A118.9
C6—C1—C2—C30.0 (7)C7—C8—C9—C10168.6 (4)
Cl1—C1—C2—C3−178.4 (4)O1—C9—C10—C15−0.6 (6)
C1—C2—C3—C4−0.7 (7)C8—C9—C10—C15179.9 (4)
C2—C3—C4—C50.7 (7)O1—C9—C10—C11−179.9 (4)
C3—C4—C5—C60.2 (7)C8—C9—C10—C110.7 (6)
C2—C1—C6—C50.8 (6)C15—C10—C11—C121.1 (6)
Cl1—C1—C6—C5179.1 (3)C9—C10—C11—C12−179.6 (4)
C2—C1—C6—C7178.7 (4)C10—C11—C12—C13−0.1 (6)
Cl1—C1—C6—C7−3.0 (6)C11—C12—C13—N1−177.7 (4)
C4—C5—C6—C1−0.9 (6)C11—C12—C13—C14−1.2 (6)
C4—C5—C6—C7−178.8 (4)N1—C13—C14—C15178.0 (4)
C1—C6—C7—C8163.8 (5)C12—C13—C14—C151.5 (6)
C5—C6—C7—C8−18.5 (7)C13—C14—C15—C10−0.5 (7)
C6—C7—C8—C9179.9 (4)C11—C10—C15—C14−0.8 (6)
C7—C8—C9—O1−10.9 (7)C9—C10—C15—C14179.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···N1i0.85 (4)2.30 (5)3.098 (6)158 (4)
N1—H2N1···O1ii0.83 (4)2.10 (4)2.923 (5)171 (4)
C7—H7A···Cl10.932.693.081 (5)106.
C7—H7A···O10.932.452.775 (6)101.

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2093).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gu, B., Ji, W. & Huang, X.-Q. (2008a). Appl. Opt.47, 1187–1192. [PubMed]
  • Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008b). J. Appl. Phys.103, 103511.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008c). Appl. Phys. Lett.92, 091118.
  • Nardelli, M. (1995). J. Appl. Cryst.28 659.
  • Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth, 303, 520–524.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122–o2123.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography