PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1904.
Published online 2008 September 13. doi:  10.1107/S1600536808028274
PMCID: PMC2959456

N-Phenylpyridine-2-carb­amide

Abstract

In the title compound, C12H10N2O, the dihedral angle between the pyridine ring system and the phenyl ring is 1.8 (1)°. There is an intra­molecular N—H(...)N hydrogen bond between the pyridine N atom and the amide NH function.

Related literature

For general background, see: Sousa & Filgueiras (1990 [triangle]); Gomes et al. (2007 [triangle]); Morsali et al. (2003 [triangle]); Jacob & Mukherjee (2006 [triangle]); Marumoto et al. (1981 [triangle]); Piatnitski & Kiselyov (2004 [triangle]). For related structures, see: Qi et al. (2003 [triangle]); Zhang et al. (2006 [triangle]); Yin et al. (2007 [triangle]). For the synthesis, see: Chan et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1904-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O
  • M r = 198.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1904-efi1.jpg
  • a = 5.7469 (2) Å
  • b = 6.2382 (2) Å
  • c = 14.0158 (3) Å
  • β = 94.752 (2)°
  • V = 500.74 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 (2) K
  • 0.15 × 0.14 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.968, T max = 0.992
  • 5000 measured reflections
  • 1162 independent reflections
  • 1036 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.075
  • S = 1.00
  • 1162 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia,1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028274/im2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028274/im2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial suport from the Key Discipline Open Foundation of Zhejiang University of Technology (grant No. 20080604). The authors thank Mr Jian-Ming Gu (Testing and Analysis Center, Zhejiang University) for guidance in the structure analysis.

supplementary crystallographic information

Comment

Pyridine-containing amides continue to attract considerable interest as ligands for metals (Sousa & Filgueiras, 1990; Gomes et al., 2007; Jacob & Mukherjee, 2006), building blocks in organic synthesis (Marumoto et al., 1981) and physiologically active compounds (Piatnitski & Kiselyov, 2004). As part of our studies on the synthesis and characterization of these compounds, we report here the crystal structure of the title compound.

The C7—O1 [1.223 (3) Å], N1—C7 [1.344 (3) Å] and N1—C6 [1.410 (2) Å] bond lengths indicate extensive electron delocalization in the amide linkage. The pyridyl and phenyl rings of the title compound are almost coplanar, forming a dihedral angle of 1.8 (1)°. In the crystal structure, there is an intramolecular hydrogen bond (N1—H101···N2) and no intermolecular hydrogen bonds are observed (Table 1).

The reported monoclinic space-group is in a non-standard setting (Pn, #7). There is a strong feature (h + l = 2n) in hkl data. Setting up the space group as Pc results in a β angle of 23° or 157°, respectively. Obviously such an unit-cell division is inappropriate. Therefore, the non-standard setting Pn was chosen.

Experimental

The title compound was synthesized from pyridine-2-carboxylic acid and aniline according to the procedure of Chan et al. (2004). The crystal used for data collection was obtained by slow evaporation from a saturated ethanol/water solution at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.

Crystal data

C12H10N2OF(000) = 208
Mr = 198.22Dx = 1.315 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 2226 reflections
a = 5.7469 (2) Åθ = 2.9–25.1°
b = 6.2382 (2) ŵ = 0.09 mm1
c = 14.0158 (3) ÅT = 296 K
β = 94.752 (2)°Block, colourless
V = 500.74 (3) Å30.15 × 0.14 × 0.09 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer1162 independent reflections
Radiation source: fine-focus sealed tube1036 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 10 pixels mm-1θmax = 27.7°, θmin = 2.9°
ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2004)k = −8→5
Tmin = 0.968, Tmax = 0.992l = −18→18
5000 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0365P)2 + 0.0548P] where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.0173 (3)0.2086 (3)0.59409 (11)0.0452 (4)
H101−0.14200.25100.61830.054*
C80.1414 (3)0.5113 (3)0.68241 (13)0.0435 (4)
C6−0.0401 (3)0.0235 (3)0.53631 (12)0.0412 (4)
C10.1246 (4)−0.0375 (4)0.47407 (15)0.0509 (5)
H10.25700.04590.46850.061*
C70.1751 (4)0.3270 (3)0.61595 (15)0.0475 (5)
C20.0901 (4)−0.2230 (4)0.42049 (16)0.0569 (5)
H20.1999−0.26350.37870.068*
N2−0.0537 (3)0.5139 (3)0.72828 (12)0.0526 (4)
C5−0.2373 (4)−0.1016 (3)0.54213 (15)0.0476 (5)
H5−0.3507−0.05950.58190.057*
O10.3656 (3)0.2937 (3)0.58575 (15)0.0753 (6)
C100.2767 (5)0.8384 (3)0.75234 (17)0.0575 (5)
H100.38630.94810.75970.069*
C110.0794 (4)0.8441 (4)0.80026 (16)0.0612 (6)
H110.05230.95750.84100.073*
C3−0.1044 (4)−0.3483 (4)0.42826 (16)0.0553 (5)
H3−0.1255−0.47310.39230.066*
C12−0.0787 (4)0.6788 (4)0.78711 (17)0.0629 (6)
H12−0.21070.68230.82130.076*
C90.3106 (4)0.6677 (3)0.69302 (15)0.0516 (5)
H90.44510.65810.66070.062*
C4−0.2676 (4)−0.2879 (4)0.48961 (17)0.0553 (5)
H4−0.3986−0.37280.49560.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0458 (9)0.0397 (9)0.0515 (9)−0.0007 (7)0.0121 (7)−0.0031 (7)
C80.0478 (10)0.0408 (10)0.0422 (10)0.0013 (8)0.0051 (8)0.0021 (8)
C60.0458 (10)0.0369 (10)0.0408 (10)0.0030 (8)0.0042 (8)0.0021 (8)
C10.0504 (11)0.0521 (12)0.0517 (11)−0.0041 (10)0.0120 (9)−0.0028 (10)
C70.0497 (11)0.0398 (11)0.0539 (12)−0.0030 (9)0.0092 (9)−0.0007 (9)
C20.0594 (13)0.0609 (14)0.0515 (12)0.0060 (11)0.0117 (9)−0.0103 (10)
N20.0477 (9)0.0540 (10)0.0566 (10)−0.0015 (8)0.0067 (8)−0.0096 (8)
C50.0464 (10)0.0458 (11)0.0515 (10)−0.0004 (9)0.0088 (8)−0.0024 (9)
O10.0531 (9)0.0669 (11)0.1095 (15)−0.0111 (9)0.0283 (9)−0.0330 (10)
C100.0699 (14)0.0471 (11)0.0550 (11)−0.0102 (12)0.0014 (10)−0.0007 (11)
C110.0714 (16)0.0553 (14)0.0559 (13)0.0065 (12)−0.0002 (11)−0.0156 (11)
C30.0652 (13)0.0459 (11)0.0537 (11)0.0014 (11)−0.0023 (10)−0.0119 (10)
C120.0561 (13)0.0705 (15)0.0635 (14)0.0047 (11)0.0122 (11)−0.0168 (12)
C90.0559 (11)0.0486 (12)0.0513 (11)−0.0086 (10)0.0116 (9)−0.0018 (9)
C40.0550 (12)0.0506 (13)0.0598 (12)−0.0070 (10)0.0027 (10)−0.0027 (11)

Geometric parameters (Å, °)

N1—C71.344 (3)N2—C121.333 (3)
N1—C61.410 (2)C5—C41.379 (3)
N1—H1010.8600C5—H50.9300
C8—N21.338 (2)C10—C111.365 (4)
C8—C91.377 (3)C10—C91.375 (3)
C8—C71.502 (3)C10—H100.9300
C6—C51.384 (3)C11—C121.377 (3)
C6—C11.392 (3)C11—H110.9300
C1—C21.385 (3)C3—C41.377 (3)
C1—H10.9300C3—H30.9300
C7—O11.223 (3)C12—H120.9300
C2—C31.376 (4)C9—H90.9300
C2—H20.9300C4—H40.9300
C7—N1—C6128.07 (17)C4—C5—H5119.6
C7—N1—H101116.0C6—C5—H5119.6
C6—N1—H101116.0C11—C10—C9118.9 (2)
N2—C8—C9123.48 (19)C11—C10—H10120.6
N2—C8—C7117.62 (17)C9—C10—H10120.6
C9—C8—C7118.89 (18)C10—C11—C12118.7 (2)
C5—C6—C1119.06 (17)C10—C11—H11120.7
C5—C6—N1117.74 (17)C12—C11—H11120.7
C1—C6—N1123.19 (17)C2—C3—C4119.6 (2)
C2—C1—C6119.57 (19)C2—C3—H3120.2
C2—C1—H1120.2C4—C3—H3120.2
C6—C1—H1120.2N2—C12—C11123.8 (2)
O1—C7—N1124.81 (19)N2—C12—H12118.1
O1—C7—C8120.61 (18)C11—C12—H12118.1
N1—C7—C8114.58 (18)C10—C9—C8118.7 (2)
C3—C2—C1120.8 (2)C10—C9—H9120.6
C3—C2—H2119.6C8—C9—H9120.6
C1—C2—H2119.6C3—C4—C5120.1 (2)
C12—N2—C8116.38 (18)C3—C4—H4119.9
C4—C5—C6120.77 (19)C5—C4—H4119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H101···N20.862.282.697 (2)110.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2083).

References

  • Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chan, A. S. C., Qi, J. Y., Pai, C. C., Li, X. J., Deng, L. S., Li, W. Z. & Hu, J. Y. (2004). US Patent 6 680 385.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gomes, L., Low, J. N., Valente, M. A. D. C., Freire, C. & Castro, B. (2007). Acta Cryst. C63, m293–m296. [PubMed]
  • Jacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565–4573.
  • Marumoto, R., Shunsuke, S. & Masao, T. (1981). Eur. Patent EP 38 161.
  • Morsali, A., Ramazani, A. & Mahjoub, A. R. (2003). J. Coord. Chem.56, 1555–1566.
  • Piatnitski, E. & Kiselyov, A. S. (2004). US Patent 0 017 248.
  • Qi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374–o375.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sousa, G. F. & Filgueiras, C. A. L. (1990). Transition Met. Chem.15, 286–289.
  • Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, o4617.
  • Zhang, Q., Zhang, S.-P. & Shao, S.-C. (2006). Acta Cryst. E62, o4695–o4696.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography