PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): i71.
Published online 2008 September 27. doi:  10.1107/S1600536808030572
PMCID: PMC2959454

R-Ferrite-type barium cobalt stannate, BaCo2Sn4O11

Abstract

BaCo2Sn4O11 is isotypic with R-ferrite, BaTi2Fe4O11. The Co atoms fully occupy trigonal–bipyramidal sites (An external file that holds a picture, illustration, etc.
Object name is e-64-00i71-efi1.jpg) and are disordered with Sn atoms in octa­hedral sites (.2/m symmetry), as represented in the formula BaCoSn2(Co0.34Sn0.66)4O11. Ba atoms are situated in a 12-fold coordinated site (An external file that holds a picture, illustration, etc.
Object name is e-64-00i71-efi2.jpg symmetry).

Related literature

For reports on R-ferrite structures, BaTi2Fe4O11, see: Haberey & Velicescu (1974 [triangle]); Obradors et al. (1983 [triangle]); Cadée & Ijdo (1984 [triangle]); Sosnowska et al. (1996 [triangle]). For reports on R-ferrite structure with other compositions, see: Cadée & Ijdo (1984 [triangle]); Kanke et al. (1992 [triangle]); Martínez et al. (1993 [triangle]); Foo et al. (2006 [triangle]). Sosnowska et al. (1996 [triangle]). For Ba3SnCo10O20, another phase in the Ba–Co–Sn–O system, see: Sonne & Müller-Buschbaum (1993 [triangle]).

Experimental

Crystal data

  • BaCo2Sn4O11
  • M r = 905.96
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-64-00i71-efi3.jpg
  • a = 6.0880 (2) Å
  • c = 14.1049 (6) Å
  • V = 452.74 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 18.76 mm−1
  • T = 293 (2) K
  • 0.06 × 0.04 × 0.03 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.524, T max = 0.801
  • 3945 measured reflections
  • 230 independent reflections
  • 215 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.041
  • S = 1.13
  • 230 reflections
  • 28 parameters
  • 1 restraint
  • Δρmax = 0.73 e Å−3
  • Δρmin = −1.81 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: VESTA (Momma & Izumi, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030572/mg2057sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030572/mg2057Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

supplementary crystallographic information

Comment

BaTi2Fe4O11 crystallizes in a six-layer hexagonal structure (R-type, space group P63/mmc) (Haberey & Velicescu, 1974; Obradors et al., 1983; Cadée & Ijdo, 1984; Sosnowska et al., 1996) that is adopted by many multinary iron oxides and transition metal oxides exhibiting complex magnetic behavior (Cadée & Ijdo, 1984; Kanke et al., 1992; Martínez et al., 1993; Foo et al., 2006). BaCo2Sn4O11 has been indicated to be the end member in a solid solution series BaFe4-2xSn2+xCoxO11, where the distribution of Fe, Co, and Sn cations was determined by combined powder X-ray and neutron diffraction (Martínez et al., 1993). However, no crystallographic information (cell parameters and atomic positions) was reported except for the Co and Sn site occupancies in BaCo2Sn4O11. The present paper reports the detailed structure of BaCo2Sn4O11 determined by single-crystal X-ray diffraction.

The structure of BaCo2Sn4O11 can be described in terms of cation-centered oxygen polyhedra (Fig. 1). The disorder within the octahedral 6g site (occupancies of 0.664 (7) Sn1 and 0.336 (7) Co1) agrees with results reported by Martínez et al. (1993) (0.7 Sn1 and 0.3 Co1). These Sn1/Co1-centered octahedra share edges to form layers perpendicular to the c axis. Located between these layers are pillars of two face-sharing Sn2-centered octahedra stacked along the c axis. The trigonal bipyramidal 2d site is occupied exclusively by Co2 atoms and exhibits a displacement ellipsoid elongated along the c direction (Fig. 2). Ba atoms are situated in a 12-fold coordination site (2c).

Experimental

A mixture of BaCO3 (99.99%, Wako Pure Chemical Ind.), Co3O4 (99.95%, Kanto Chemical Co. Inc.), and SnO2 (99.9%, Rare Metallic Co. Ltd.) powders in a molar ratio of Ba:Co:Sn = 1:2:4 was ground together and pressed into a pellet. The pellet was placed on a platinum plate and heated in air for 1 h at 1473 K or 1823 K in an electric furnace. The pellet was melted at 1823 K and green transparent single crystals of BaCo2Sn4O11 were obtained. The chemical analysis of the polycrystalline single phase BaCo2Sn4O11 prepared at 1473 K was carried out by inductively coupled plasma (ICP) emission spectrometry for Ba, Co and Sn, and by the He carrier melting-infrared absorption method (TC-436, LECO) for O. The results of the chemical analysis (Ba 14.9 (5), Co 13.8 (5), Sn 52.9 (8), and O 19.1 (8) wt%) agreed with the ideal contents (Ba 15.2, Co 13.4, Sn 51.9, O 19.5 wt%).

The magnetic susceptibility of BaCo2Sn4O11 was measured with a superconducting quantum interference device (SQUID) magnetometer (Quantum Design, MPMS XL) from 5 to 400 K under a magnetic field of 5 kOe. The polycrystalline sample followed the Curie–Weiss law above the Neel temperature (TN). The TN of 7 K, the Weiss temperature (Θ) of -42 K, and the magnetic moment (µeff) of 4.7 µB per Co measured for the sample were consistent with the values reported by Martínez et al. (1993) (TN = 9 K, Θ = -44 K, µeff = 4.4 µB).

Refinement

In the structure analysis using powder X-ray and neutron diffraction data for BaTi2Fe4O11 and BaSn2Fe4O11 (Obradors et al., 1983; Cadée & Ijdo,1984; Martínez et al., 1993), the 2d site of Fe atoms was statistically split into two site (4f). We applied this split site model and refined the positional parameter of z for the Co2 site, but it converged into 0.250 within an estimated deviation. Thus, we fixed the position at 2d site for the final refinement.

Figures

Fig. 1.
Structure of BaCo2Sn4O11 in terms of cation-centered oxygen polyhedra.
Fig. 2.
The O-atom coordination around the cation sites of BaCo2Sn4O11 (symmetry codes as in Table 1). Displacement ellipsoids are drawn at the 99% probability level.

Crystal data

BaCo2Sn4O11Dx = 6.646 Mg m3
Mr = 905.96Mo Kα radiation, λ = 0.71075 Å
Hexagonal, P63/mmcCell parameters from 3536 reflections
Hall symbol: -P 6c 2cθ = 7.7–54.7°
a = 6.0880 (2) ŵ = 18.76 mm1
c = 14.1049 (6) ÅT = 293 K
V = 452.74 (3) Å3Block, green
Z = 20.06 × 0.04 × 0.03 mm
F(000) = 796

Data collection

Rigaku R-AXIS RAPID diffractometer230 independent reflections
Radiation source: fine-focus sealed tube215 reflections with I > 2σ(I)
graphiteRint = 0.072
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.9°
ω scansh = −7→7
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −7→7
Tmin = 0.524, Tmax = 0.801l = −18→18
3945 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018w = 1/[σ2(Fo2) + 0.8941P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.73 e Å3
230 reflectionsΔρmin = −1.81 e Å3
28 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0041 (4)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ba10.33330.66670.25000.0147 (2)
Sn10.50000.00000.00000.0112 (3)0.664 (7)
Co10.50000.00000.00000.0112 (3)0.336 (7)
Sn20.00000.00000.14643 (4)0.0096 (2)
Co20.66670.33330.25000.0203 (4)
O10.1728 (3)0.3456 (5)0.0815 (2)0.0118 (7)
O20.2933 (8)0.1466 (4)0.25000.0129 (10)
O30.66670.33330.0772 (4)0.0136 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ba10.0169 (3)0.0169 (3)0.0103 (4)0.00844 (15)0.0000.000
Sn10.0139 (4)0.0110 (4)0.0076 (4)0.0055 (2)0.00013 (10)0.0003 (2)
Co10.0139 (4)0.0110 (4)0.0076 (4)0.0055 (2)0.00013 (10)0.0003 (2)
Sn20.0113 (3)0.0113 (3)0.0062 (3)0.00563 (14)0.0000.000
Co20.0086 (5)0.0086 (5)0.0436 (13)0.0043 (3)0.0000.000
O10.0139 (12)0.0132 (17)0.0080 (17)0.0066 (8)0.0015 (6)0.0030 (13)
O20.010 (2)0.0174 (18)0.009 (2)0.0051 (11)0.0000.000
O30.0159 (18)0.0159 (18)0.009 (3)0.0080 (9)0.0000.000

Geometric parameters (Å, °)

Ba1—O1i2.918 (3)Sn2—O2xii2.127 (3)
Ba1—O1ii2.918 (3)Sn2—Sn2v2.9217 (11)
Ba1—O1iii2.918 (3)Sn2—O3xvi3.6479 (15)
Ba1—O12.918 (3)Sn2—O3xvii3.6479 (15)
Ba1—O1iv2.918 (3)Sn2—O33.6479 (15)
Ba1—O1v2.918 (3)Sn2—Ba1xviii3.8064 (2)
Ba1—O2ii3.051 (6)Sn2—Co2xvi3.8064 (2)
Ba1—O2vi3.051 (6)Co2—O2x1.969 (4)
Ba1—O2vii3.051 (6)Co2—O2viii1.969 (4)
Ba1—O2iv3.051 (6)Co2—O21.969 (4)
Ba1—O23.051 (6)Co2—O32.437 (6)
Ba1—O2viii3.051 (6)Co2—O3v2.437 (6)
Sn1—O32.068 (3)Co2—Ba1xix3.51492 (11)
Sn1—O3ix2.068 (3)O1—Co1viii2.074 (2)
Sn1—O1x2.074 (2)O1—Sn1viii2.074 (2)
Sn1—O1xi2.074 (2)O1—Co1vi2.074 (2)
Sn1—O1xii2.074 (2)O1—Sn1vi2.074 (2)
Sn1—O1xiii2.074 (2)O1—O3xx2.806 (5)
Sn1—Sn1x3.04401 (10)O1—O33.045 (2)
Sn1—Sn1xiv3.04401 (10)O1—O3xvi3.045 (2)
Sn1—Co1x3.04401 (10)O1—Co2xvi3.8627 (19)
Sn1—Co1xiv3.04401 (10)O2—Sn2v2.127 (3)
Sn1—Sn1xv3.04401 (10)O2—Ba1xviii3.052 (3)
Sn1—Co1xv3.04401 (10)O2—O3v3.133 (5)
Sn2—O1vi2.040 (3)O2—O33.133 (5)
Sn2—O12.040 (3)O3—Co1x2.068 (3)
Sn2—O1xii2.040 (3)O3—Sn1x2.068 (3)
Sn2—O22.127 (3)O3—Co1viii2.068 (3)
Sn2—O2vi2.127 (3)O3—Sn1viii2.068 (3)
O1i—Ba1—O1ii109.09 (11)O2—Sn2—Sn2v46.63 (8)
O1i—Ba1—O1iii60.31 (9)O2vi—Sn2—Sn2v46.63 (8)
O1ii—Ba1—O1iii146.28 (5)O2xii—Sn2—Sn2v46.63 (8)
O1i—Ba1—O1146.28 (5)O1vi—Sn2—O3xvi56.59 (3)
O1ii—Ba1—O160.31 (9)O1—Sn2—O3xvi56.59 (3)
O1iii—Ba1—O1146.28 (5)O1xii—Sn2—O3xvi137.79 (12)
O1i—Ba1—O1iv146.28 (5)O2—Sn2—O3xvi122.27 (6)
O1ii—Ba1—O1iv60.31 (9)O2vi—Sn2—O3xvi58.89 (11)
O1iii—Ba1—O1iv109.09 (12)O2xii—Sn2—O3xvi122.27 (6)
O1—Ba1—O1iv60.31 (9)Sn2v—Sn2—O3xvi105.52 (8)
O1i—Ba1—O1v60.31 (9)O1vi—Sn2—O3xvii56.59 (3)
O1ii—Ba1—O1v146.28 (5)O1—Sn2—O3xvii137.79 (12)
O1iii—Ba1—O1v60.31 (9)O1xii—Sn2—O3xvii56.59 (3)
O1—Ba1—O1v109.09 (11)O2—Sn2—O3xvii122.27 (6)
O1iv—Ba1—O1v146.28 (5)O2vi—Sn2—O3xvii122.27 (6)
O1i—Ba1—O2ii58.59 (5)O2xii—Sn2—O3xvii58.89 (11)
O1ii—Ba1—O2ii58.59 (5)Sn2v—Sn2—O3xvii105.52 (8)
O1iii—Ba1—O2ii118.76 (5)O3xvi—Sn2—O3xvii113.12 (7)
O1—Ba1—O2ii92.30 (4)O1vi—Sn2—O3137.79 (12)
O1iv—Ba1—O2ii118.76 (5)O1—Sn2—O356.59 (3)
O1v—Ba1—O2ii92.30 (5)O1xii—Sn2—O356.59 (3)
O1i—Ba1—O2vi92.30 (4)O2—Sn2—O358.89 (11)
O1ii—Ba1—O2vi92.30 (4)O2vi—Sn2—O3122.27 (6)
O1iii—Ba1—O2vi118.76 (5)O2xii—Sn2—O3122.27 (6)
O1—Ba1—O2vi58.59 (5)Sn2v—Sn2—O3105.52 (8)
O1iv—Ba1—O2vi118.76 (5)O3xvi—Sn2—O3113.12 (7)
O1v—Ba1—O2vi58.59 (5)O3xvii—Sn2—O3113.12 (7)
O2ii—Ba1—O2vi67.94 (15)O1vi—Sn2—Ba1xviii125.796 (15)
O1i—Ba1—O2vii58.59 (5)O1—Sn2—Ba1xviii125.796 (15)
O1ii—Ba1—O2vii58.59 (5)O1xii—Sn2—Ba1xviii49.26 (9)
O1iii—Ba1—O2vii92.30 (4)O2—Sn2—Ba1xviii53.189 (6)
O1—Ba1—O2vii118.76 (5)O2vi—Sn2—Ba1xviii114.06 (8)
O1iv—Ba1—O2vii92.30 (4)O2xii—Sn2—Ba1xviii53.189 (6)
O1v—Ba1—O2vii118.76 (5)Sn2v—Sn2—Ba1xviii67.432 (8)
O2ii—Ba1—O2vii52.06 (15)O3xvi—Sn2—Ba1xviii172.95 (8)
O2vi—Ba1—O2vii120.000 (1)O3xvii—Sn2—Ba1xviii69.99 (4)
O1i—Ba1—O2iv92.30 (4)O3—Sn2—Ba1xviii69.99 (4)
O1ii—Ba1—O2iv92.30 (4)O1vi—Sn2—Co2xvi76.11 (5)
O1iii—Ba1—O2iv58.59 (5)O1—Sn2—Co2xvi76.11 (5)
O1—Ba1—O2iv118.76 (5)O1xii—Sn2—Co2xvi175.88 (9)
O1iv—Ba1—O2iv58.59 (5)O2—Sn2—Co2xvi94.13 (5)
O1v—Ba1—O2iv118.76 (5)O2vi—Sn2—Co2xvi20.80 (8)
O2ii—Ba1—O2iv120.0O2xii—Sn2—Co2xvi94.13 (5)
O2vi—Ba1—O2iv172.06 (15)Sn2v—Sn2—Co2xvi67.432 (8)
O2vii—Ba1—O2iv67.94 (15)O3xvi—Sn2—Co2xvi38.09 (8)
O1i—Ba1—O2118.76 (5)O3xvii—Sn2—Co2xvi123.20 (2)
O1ii—Ba1—O2118.76 (5)O3—Sn2—Co2xvi123.20 (2)
O1iii—Ba1—O292.30 (4)Ba1xviii—Sn2—Co2xvi134.863 (15)
O1—Ba1—O258.59 (5)O2x—Co2—O2viii120.000 (1)
O1iv—Ba1—O292.30 (4)O2x—Co2—O2120.0
O1v—Ba1—O258.59 (5)O2viii—Co2—O2120.0
O2ii—Ba1—O2120.0O2x—Co2—O390.0
O2vi—Ba1—O252.06 (15)O2viii—Co2—O390.000 (1)
O2vii—Ba1—O2172.06 (15)O2—Co2—O390.0
O2iv—Ba1—O2120.0O2x—Co2—O3v90.0
O1i—Ba1—O2viii118.76 (5)O2viii—Co2—O3v90.0
O1ii—Ba1—O2viii118.76 (5)O2—Co2—O3v90.0
O1iii—Ba1—O2viii58.59 (5)O3—Co2—O3v180.0
O1—Ba1—O2viii92.30 (4)O2x—Co2—Ba1xix60.0
O1iv—Ba1—O2viii58.59 (5)O2viii—Co2—Ba1xix60.0
O1v—Ba1—O2viii92.30 (4)O2—Co2—Ba1xix180.0
O2ii—Ba1—O2viii172.06 (15)O3—Co2—Ba1xix90.0
O2vi—Ba1—O2viii120.0O3v—Co2—Ba1xix90.0
O2vii—Ba1—O2viii120.0Sn2—O1—Co1viii126.84 (8)
O2iv—Ba1—O2viii52.06 (15)Sn2—O1—Sn1viii126.84 (8)
O2—Ba1—O2viii67.94 (15)Co1viii—O1—Sn1viii0.0
O3—Sn1—O3ix180.0 (3)Sn2—O1—Co1vi126.84 (8)
O3—Sn1—O1x94.67 (11)Co1viii—O1—Co1vi94.45 (12)
O3ix—Sn1—O1x85.33 (11)Sn1viii—O1—Co1vi94.45 (12)
O3—Sn1—O1xi85.33 (11)Sn2—O1—Sn1vi126.84 (8)
O3ix—Sn1—O1xi94.67 (11)Co1viii—O1—Sn1vi94.45 (12)
O1x—Sn1—O1xi180.00 (14)Sn1viii—O1—Sn1vi94.45 (12)
O3—Sn1—O1xii94.67 (11)Co1vi—O1—Sn1vi0.0
O3ix—Sn1—O1xii85.33 (11)Sn2—O1—O3xx153.78 (16)
O1x—Sn1—O1xii89.97 (16)Co1viii—O1—O3xx47.25 (6)
O1xi—Sn1—O1xii90.03 (16)Sn1viii—O1—O3xx47.25 (6)
O3—Sn1—O1xiii85.33 (11)Co1vi—O1—O3xx47.25 (6)
O3ix—Sn1—O1xiii94.67 (11)Sn1vi—O1—O3xx47.25 (6)
O1x—Sn1—O1xiii90.03 (16)Sn2—O1—Ba198.77 (12)
O1xi—Sn1—O1xiii89.97 (16)Co1viii—O1—Ba1102.93 (9)
O1xii—Sn1—O1xiii180.00 (14)Sn1viii—O1—Ba1102.93 (9)
O3—Sn1—Sn1x42.60 (9)Co1vi—O1—Ba1102.93 (9)
O3ix—Sn1—Sn1x137.40 (9)Sn1vi—O1—Ba1102.93 (9)
O1x—Sn1—Sn1x91.55 (7)O3xx—O1—Ba1107.45 (11)
O1xi—Sn1—Sn1x88.45 (7)Sn2—O1—O389.42 (7)
O1xii—Sn1—Sn1x137.22 (6)Co1viii—O1—O342.59 (8)
O1xiii—Sn1—Sn1x42.78 (6)Sn1viii—O1—O342.59 (8)
O3—Sn1—Sn1xiv137.40 (9)Co1vi—O1—O3136.98 (15)
O3ix—Sn1—Sn1xiv42.60 (9)Sn1vi—O1—O3136.98 (15)
O1x—Sn1—Sn1xiv88.45 (7)O3xx—O1—O389.84 (10)
O1xi—Sn1—Sn1xiv91.55 (7)Ba1—O1—O391.63 (10)
O1xii—Sn1—Sn1xiv42.78 (6)Sn2—O1—O3xvi89.42 (7)
O1xiii—Sn1—Sn1xiv137.22 (6)Co1viii—O1—O3xvi136.98 (15)
Sn1x—Sn1—Sn1xiv180.0Sn1viii—O1—O3xvi136.98 (15)
O3—Sn1—Co1x42.60 (9)Co1vi—O1—O3xvi42.59 (8)
O3ix—Sn1—Co1x137.40 (9)Sn1vi—O1—O3xvi42.59 (8)
O1x—Sn1—Co1x91.55 (7)O3xx—O1—O3xvi89.84 (10)
O1xi—Sn1—Co1x88.45 (7)Ba1—O1—O3xvi91.63 (10)
O1xii—Sn1—Co1x137.22 (6)O3—O1—O3xvi176.68 (18)
O1xiii—Sn1—Co1x42.78 (6)Sn2—O1—Co273.06 (6)
Sn1x—Sn1—Co1x0.0Co1viii—O1—Co276.66 (3)
Sn1xiv—Sn1—Co1x180.0Sn1viii—O1—Co276.66 (3)
O3—Sn1—Co1xiv137.40 (9)Co1vi—O1—Co2157.83 (12)
O3ix—Sn1—Co1xiv42.60 (9)Sn1vi—O1—Co2157.83 (12)
O1x—Sn1—Co1xiv88.45 (7)O3xx—O1—Co2120.06 (6)
O1xi—Sn1—Co1xiv91.55 (7)Ba1—O1—Co260.56 (4)
O1xii—Sn1—Co1xiv42.78 (6)O3—O1—Co239.11 (11)
O1xiii—Sn1—Co1xiv137.22 (6)O3xvi—O1—Co2143.08 (14)
Sn1x—Sn1—Co1xiv180.0Sn2—O1—Co2xvi73.06 (6)
Sn1xiv—Sn1—Co1xiv0.0Co1viii—O1—Co2xvi157.83 (12)
Co1x—Sn1—Co1xiv180.0Sn1viii—O1—Co2xvi157.83 (12)
O3—Sn1—Sn1xv137.40 (9)Co1vi—O1—Co2xvi76.66 (3)
O3ix—Sn1—Sn1xv42.60 (9)Sn1vi—O1—Co2xvi76.66 (3)
O1x—Sn1—Sn1xv42.78 (6)O3xx—O1—Co2xvi120.06 (6)
O1xi—Sn1—Sn1xv137.22 (6)Ba1—O1—Co2xvi60.56 (4)
O1xii—Sn1—Sn1xv88.45 (7)O3—O1—Co2xvi143.08 (14)
O1xiii—Sn1—Sn1xv91.55 (7)O3xvi—O1—Co2xvi39.11 (11)
Sn1x—Sn1—Sn1xv120.0Co2—O1—Co2xvi104.01 (7)
Sn1xiv—Sn1—Sn1xv60.0Co2—O2—Sn2136.63 (8)
Co1x—Sn1—Sn1xv120.0Co2—O2—Sn2v136.63 (8)
Co1xiv—Sn1—Sn1xv60.0Sn2—O2—Sn2v86.75 (15)
O3—Sn1—Co1xv137.40 (9)Co2—O2—Ba1xviii86.03 (8)
O3ix—Sn1—Co1xv42.60 (9)Sn2—O2—Ba1xviii92.88 (5)
O1x—Sn1—Co1xv42.78 (6)Sn2v—O2—Ba1xviii92.88 (5)
O1xi—Sn1—Co1xv137.22 (6)Co2—O2—Ba186.03 (8)
O1xii—Sn1—Co1xv88.45 (7)Sn2—O2—Ba192.88 (5)
O1xiii—Sn1—Co1xv91.55 (7)Sn2v—O2—Ba192.88 (5)
Sn1x—Sn1—Co1xv120.0Ba1xviii—O2—Ba1172.06 (15)
Sn1xiv—Sn1—Co1xv60.0Co2—O2—O3v51.07 (9)
Co1x—Sn1—Co1xv120.0Sn2—O2—O3v172.31 (15)
Co1xiv—Sn1—Co1xv60.0Sn2v—O2—O3v85.56 (7)
Sn1xv—Sn1—Co1xv0.0Ba1xviii—O2—O3v87.51 (5)
O1vi—Sn2—O1101.38 (11)Ba1—O2—O3v87.51 (5)
O1vi—Sn2—O1xii101.38 (11)Co2—O2—O351.07 (9)
O1—Sn2—O1xii101.38 (11)Sn2—O2—O385.56 (7)
O1vi—Sn2—O2163.32 (12)Sn2v—O2—O3172.31 (15)
O1—Sn2—O289.07 (8)Ba1xviii—O2—O387.51 (5)
O1xii—Sn2—O289.07 (8)Ba1—O2—O387.51 (5)
O1vi—Sn2—O2vi89.07 (8)O3v—O2—O3102.13 (17)
O1—Sn2—O2vi89.07 (8)Sn1—O3—Co1x94.80 (17)
O1xii—Sn2—O2vi163.32 (12)Sn1—O3—Sn1x94.80 (17)
O2—Sn2—O2vi78.03 (12)Co1x—O3—Sn1x0.0
O1vi—Sn2—O2xii89.07 (8)Sn1—O3—Co1viii94.80 (17)
O1—Sn2—O2xii163.32 (12)Co1x—O3—Co1viii94.80 (17)
O1xii—Sn2—O2xii89.07 (8)Sn1x—O3—Co1viii94.80 (17)
O2—Sn2—O2xii78.03 (12)Sn1—O3—Sn1viii94.80 (17)
O2vi—Sn2—O2xii78.03 (12)Co1x—O3—Sn1viii94.80 (17)
O1vi—Sn2—Sn2v116.69 (9)Sn1x—O3—Sn1viii94.80 (17)
O1—Sn2—Sn2v116.69 (9)Co1viii—O3—Sn1viii0.0
O1xii—Sn2—Sn2v116.69 (9)

Symmetry codes: (i) −x+y, −x+1, −z+1/2; (ii) −x+y, −x+1, z; (iii) −y+1, xy+1, −z+1/2; (iv) −y+1, xy+1, z; (v) x, y, −z+1/2; (vi) −y, xy, z; (vii) x, y+1, z; (viii) −x+y+1, −x+1, z; (ix) −x+1, −y, −z; (x) −y+1, xy, z; (xi) y, −x+y, −z; (xii) −x+y, −x, z; (xiii) xy+1, x, −z; (xiv) −y, xy−1, z; (xv) −x+y+1, −x, z; (xvi) x−1, y, z; (xvii) x−1, y−1, z; (xviii) x, y−1, z; (xix) x+1, y, z; (xx) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2057).

References

  • Cadée, M. C. & Ijdo, D. J. (1984). J. Solid State Chem.52, 302–312.
  • Foo, M. L., Huang, Q., Lynn, J. W., Lee, W.-L., Klimczuk, T., Hagemann, I. S., Ong, N. P. & Cava, R. J. (2006). J. Solid State Chem.179, 563–572.
  • Haberey, F. & Velicescu, M. (1974). Acta Cryst. B30, 1507–1510.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Kanke, Y., Kato, K., Takayama-Muromachi, E. & Isobe, M. (1992). Acta Cryst. C48, 1376–1380.
  • Martínez, B., Sandiumenge, F., Golosovski, I., Galí, S., Labarta, A. & Obradors, X. (1993). Phys. Rev. B, 48, 16440–16448. [PubMed]
  • Momma, K. & Izumi, F. (2008). J. Appl. Cryst.41, 653–658.
  • Obradors, X., Collomb, A., Pannetier, J., Isalgué, A., Tejada, J. & Joubert, J. C. (1983). Mater. Res. Bull.18, 1543–1553.
  • Rigaku/MSC (2005). PROCESS-AUTO and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonne, P. & Müller-Buschbaum, Hk. (1993). J. Alloys Compd, 201, 235–237.
  • Sosnowska, I., Przeniosło, R., Shiojiri, M. & Fischer, P. (1996). J. Magn. Magn. Mater.160, 382–383.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography