PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2009–o2010.
Published online 2008 September 27. doi:  10.1107/S1600536808030213
PMCID: PMC2959452

1-Bromo­acetyl-2,6-bis­(4-methoxy­phen­yl)-3,5-dimethyl­piperidin-4-one

Abstract

In the title compound, C23H26BrNO4, the piperidinone ring adopts a boat conformation. The dihedral angle between the two benzene rings is 70.9 (1)°. The two meth­oxy groups are close to coplanar with the attached benzene rings [C—C—O—C torsion angles of 6.3 (5) and 16.4 (4)°]. A weak C—H(...)Br intra­molecular inter­action is observed. In the crystal structure, mol­ecules are linked into a chain along [101] by inter­molecular C—H(...)O hydrogen bonds. A short inter­molecular Br(...)O contact [3.063 (2) Å] is observed.

Related literature

For background on the piperidine ring system, see: O’Hagan (2000 [triangle]); Pinder (1992 [triangle]). For information on the aryl­piperidine scaffold, see: Horton et al. (2003 [triangle]). For piperidone derivatives, see: Baluja et al. (1964 [triangle]); Mutus et al. (1989 [triangle]). For the biological activities of compounds possessing an amide bond linkage, see: Priya et al. (2007 [triangle]); Bylov et al. (1999 [triangle]); Dollery (1999 [triangle]). For the activivities of chloro­acetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diaryl­piperidin-4-ones, see: Aridoss et al. (2007a [triangle],b [triangle]; 2008a [triangle]). For a related structure, see: Aridoss et al. (2008b [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2009-scheme1.jpg

Experimental

Crystal data

  • C23H26BrNO4
  • M r = 460.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2009-efi1.jpg
  • a = 12.9487 (9) Å
  • b = 25.2882 (18) Å
  • c = 8.9701 (6) Å
  • β = 132.930 (1)°
  • V = 2150.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.94 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.594, T max = 0.747
  • 13660 measured reflections
  • 5139 independent reflections
  • 3748 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.098
  • S = 1.02
  • 5139 reflections
  • 266 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1651 Friedel pairs
  • Flack parameter: 0.004 (7)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030213/ci2672sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030213/ci2672Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

GA and YTJ acknowledge support provided by the second stage of the BK21 program, Republic of Korea. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science & Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

supplementary crystallographic information

Comment

The piperidine ring system is ubiquitous structural component of naturally occurring alkaloid and pharmaceuticals (O'Hagan, 2000; Pinder, 1992). Its biological properties are highly dependent on the type and location of substituents on the heterocyclic ring. The arylpiperidine scaffold is a key element involved in binding to a variety of receptors and therefore can be described as a privileged structure (Horton et al., 2003). Similarly, piperidone derivatives have also received wide interest among chemists and biologists due to their envisaged mode of interaction with cellular thiols, with modest or no affinity for the hydroxy and amine groups found in nucleic acids (Baluja et al., 1964; Mutus et al., 1989). Generally, compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial (Priya et al., 2007), anti-inflammatory (Bylov et al., 1999), antiviral, antimalarial and general anesthetics (Dollery, 1999). Recently, we have explored the antimicrobial, analgesic and antipyretic activities associated with chloroacetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diarylpiperidin-4-ones besides the change in piperidone ring conformation (Aridoss et al., 2007a,b, 2008a). Thus, it has spurred our interest to synthesize diversely substituted 2,6-diarylpiperidin-4-ones and their derivatives. In order to establish the change in molecular conformation of piperidone ring upon bromoacetylation, the present investigation was made and confirmed by X-ray diffraction study.

The bond lengths and angles in the title molecule (Fig.1) are comparable to those observed in a related structure (Aridoss et al., 2008b). The sum of the angles at N1 (359.0 (6)°) is in accordance with sp2 hybridization. The decrease in the N1—C22 bond length (1.368 (3) Å) when compared to C1—N1 (1.481 (3) Å) and C5—N1 (1.481 (3) Å) lengths indicates the effective conjugation between lone pair of nitrogen with carbonyl group. The N-COCH2 group is coplanar as confirmed by the torsion angles C1—N1—C22—C23 of -4.0 (4)° and C5—N1—C22—O1 of -172.4 (2)°. The dihedral angle between the two benzene rings is 70.9 (1)°. The C10—C9—O3—C20 (6.3 (5)°) and C16—C15—O4—C21 (16.4 (4)°) torsion angles indicate that the methoxy groups almost lie in the plane of the phenyl rings C6—C11 and C12—C17, respectively, to which they are attached.

The piperidinone ring adopts a boat conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.673 (4) Å, q3 = -0.051 (4) Å, QT = 0.675 (4)Å, θ = 94.3 (3)° and ΔCs(C2) = 10.0 (3)°. A weak C—H···Br intramolecular interaction is observed in the molecular structure. In the crystal packing, the molecules are linked into a chain along [101] by intermolecular C—H···O hydrogen bonds (Fig. 2). A short intermolecular Br1···O4 (1+x, y, 1+z) contact of 3.063 (2) Å has been observed.

Experimental

The title compound was obtained by adopting our earlier method (Aridoss et al., 2007a). To a well stirred solution of 3,5-dimethyl-2,6-bis(p-methoxyphenyl)piperidin-4-one (1 equiv.) and triethylamine (1 equiv.) in freshly distilled benzene, bromoacetyl chloride (1 equiv.) in benzene was added in drop wise through the addition funnel for about half an hour. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with DCM. The combined DCM extracts was then washed well with 3% sodium bicarbonate solution and dried over anhydrous sodium sulfate. This upon evaporation and subsequent recrystallization in distilled ethanol furnished the diffraction-quality crystals of the title compound.

Refinement

H atoms were positioned geometrically and refined using a riding model, with aromatic C-H = 0.93 Å, methine C-H = 0.98 Å, methylene C-H = 0.97 Å and methyl C-H = 0.96 Å. The Uiso values were set at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms.

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C23H26BrNO4F(000) = 952
Mr = 460.36Dx = 1.422 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5872 reflections
a = 12.9487 (9) Åθ = 1.6–31.2°
b = 25.2882 (18) ŵ = 1.94 mm1
c = 8.9701 (6) ÅT = 293 K
β = 132.930 (1)°Prism, colourless
V = 2150.6 (3) Å30.30 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer5139 independent reflections
Radiation source: fine-focus sealed tube3748 reflections with I > 2σ(I)
graphiteRint = 0.023
ω and [var phi] scansθmax = 31.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −11→18
Tmin = 0.594, Tmax = 0.747k = −36→34
13660 measured reflectionsl = −13→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(Fo2) + (0.0517P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5139 reflectionsΔρmax = 0.42 e Å3
266 parametersΔρmin = −0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 1651 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.004 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.66353 (4)0.384464 (14)1.04369 (5)0.06848 (12)
O10.5273 (2)0.48401 (7)0.6690 (3)0.0532 (5)
O20.6012 (3)0.29025 (9)0.3780 (5)0.0771 (8)
O3−0.0290 (3)0.45775 (10)−0.4164 (4)0.0731 (7)
O4−0.0766 (2)0.31531 (9)0.3554 (3)0.0559 (5)
N10.4607 (2)0.40235 (8)0.5255 (3)0.0345 (4)
C10.4291 (3)0.34626 (9)0.5282 (4)0.0364 (5)
H10.50690.33260.66540.044*
C20.4229 (3)0.31286 (10)0.3780 (4)0.0416 (5)
H20.33560.32230.24010.050*
C30.5436 (3)0.32436 (11)0.3917 (4)0.0461 (6)
C40.5906 (4)0.38105 (11)0.4261 (6)0.0446 (7)
H40.60040.39010.33000.054*
C50.4839 (3)0.41869 (9)0.3917 (4)0.0381 (5)
H50.53060.45320.44240.046*
C60.3462 (3)0.42782 (9)0.1749 (4)0.0393 (5)
C70.3089 (3)0.40271 (11)0.0059 (4)0.0486 (6)
H70.36990.37800.02410.058*
C80.1835 (4)0.41381 (12)−0.1874 (5)0.0561 (7)
H80.16000.3961−0.29790.067*
C90.0921 (3)0.45079 (11)−0.2196 (4)0.0513 (7)
C100.1278 (3)0.47738 (12)−0.0556 (5)0.0516 (7)
H100.06820.5031−0.07520.062*
C110.2541 (3)0.46518 (10)0.1394 (4)0.0455 (6)
H110.27720.48280.24970.055*
C120.2944 (3)0.33861 (9)0.4838 (4)0.0364 (5)
C130.1691 (3)0.36284 (11)0.3213 (4)0.0432 (6)
H130.16680.38530.23710.052*
C140.0474 (3)0.35416 (10)0.2822 (4)0.0447 (6)
H14−0.03600.37090.17250.054*
C150.0489 (3)0.32085 (10)0.4052 (4)0.0408 (5)
C160.1720 (4)0.29517 (10)0.5642 (5)0.0492 (6)
H160.17320.27170.64530.059*
C170.2921 (3)0.30430 (11)0.6021 (5)0.0488 (6)
H170.37470.28700.71050.059*
C180.4147 (5)0.25375 (12)0.4064 (7)0.0680 (9)
H18A0.49450.24390.54450.102*
H18B0.41510.23370.31590.102*
H18C0.32940.24660.37650.102*
C190.7355 (4)0.38566 (13)0.6430 (7)0.0598 (10)
H19A0.79950.36100.66070.090*
H19B0.72690.37790.73890.090*
H19C0.77080.42100.66530.090*
C20−0.1223 (5)0.49859 (18)−0.4644 (7)0.0873 (12)
H20A−0.07710.5322−0.43340.131*
H20B−0.14700.4941−0.38570.131*
H20C−0.20600.4971−0.60680.131*
C21−0.0739 (4)0.29285 (15)0.5013 (6)0.0656 (9)
H21A−0.00470.31070.62910.098*
H21B−0.05010.25600.51740.098*
H21C−0.16500.29650.45710.098*
C220.4945 (3)0.43860 (10)0.6661 (4)0.0384 (5)
C230.4904 (3)0.42170 (11)0.8232 (4)0.0434 (6)
H23A0.41000.39870.76080.052*
H23B0.48020.45250.87660.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.05974 (18)0.0974 (3)0.04260 (14)0.01855 (19)0.03263 (13)0.01594 (17)
O10.0652 (13)0.0408 (10)0.0590 (12)−0.0060 (9)0.0444 (11)−0.0084 (9)
O20.0764 (17)0.0581 (13)0.123 (2)−0.0063 (11)0.0782 (18)−0.0271 (13)
O30.0637 (15)0.0801 (15)0.0478 (12)0.0042 (12)0.0271 (12)0.0110 (11)
O40.0489 (12)0.0669 (13)0.0613 (12)−0.0003 (9)0.0412 (11)0.0063 (10)
N10.0395 (11)0.0334 (9)0.0376 (10)−0.0026 (8)0.0290 (9)−0.0018 (8)
C10.0388 (12)0.0350 (12)0.0381 (12)0.0030 (10)0.0272 (11)0.0031 (9)
C20.0473 (14)0.0346 (12)0.0520 (14)−0.0020 (10)0.0374 (13)−0.0035 (11)
C30.0457 (15)0.0475 (15)0.0512 (14)0.0007 (12)0.0354 (13)−0.0075 (12)
C40.0461 (19)0.0498 (16)0.0493 (19)−0.0023 (11)0.0370 (17)−0.0005 (12)
C50.0482 (15)0.0341 (12)0.0449 (13)−0.0028 (10)0.0369 (13)−0.0007 (10)
C60.0513 (15)0.0337 (12)0.0431 (12)−0.0033 (10)0.0362 (12)0.0015 (9)
C70.0624 (18)0.0442 (13)0.0469 (15)0.0056 (12)0.0402 (15)0.0020 (11)
C80.073 (2)0.0501 (16)0.0428 (14)0.0030 (15)0.0384 (16)0.0000 (12)
C90.0532 (17)0.0517 (16)0.0436 (14)−0.0031 (13)0.0308 (14)0.0089 (12)
C100.0560 (18)0.0474 (15)0.0543 (16)0.0074 (13)0.0387 (15)0.0074 (12)
C110.0581 (17)0.0417 (14)0.0470 (14)0.0004 (12)0.0399 (14)0.0006 (11)
C120.0423 (14)0.0329 (11)0.0405 (12)−0.0008 (10)0.0307 (11)0.0005 (9)
C130.0485 (15)0.0404 (13)0.0439 (13)−0.0005 (11)0.0327 (13)0.0079 (11)
C140.0392 (14)0.0450 (16)0.0425 (13)0.0041 (11)0.0250 (12)0.0089 (11)
C150.0422 (14)0.0377 (13)0.0486 (14)−0.0060 (11)0.0333 (13)−0.0068 (11)
C160.0549 (16)0.0480 (14)0.0563 (17)0.0030 (14)0.0424 (15)0.0127 (13)
C170.0492 (16)0.0482 (15)0.0551 (16)0.0106 (12)0.0379 (15)0.0188 (13)
C180.099 (3)0.0367 (15)0.105 (3)−0.0042 (15)0.084 (3)−0.0081 (16)
C190.043 (2)0.060 (2)0.068 (3)−0.0046 (13)0.035 (2)−0.0127 (15)
C200.076 (3)0.091 (3)0.078 (3)0.021 (2)0.046 (2)0.030 (2)
C210.066 (2)0.087 (2)0.065 (2)−0.0187 (17)0.0529 (19)−0.0098 (17)
C220.0332 (12)0.0415 (13)0.0373 (12)0.0018 (10)0.0227 (11)−0.0022 (10)
C230.0412 (14)0.0541 (16)0.0376 (12)0.0032 (11)0.0278 (12)−0.0022 (11)

Geometric parameters (Å, °)

Br1—C231.945 (3)C10—C111.390 (4)
O1—C221.219 (3)C10—H100.93
O2—C31.201 (3)C11—H110.93
O3—C91.354 (4)C12—C131.382 (4)
O3—C201.415 (5)C12—C171.387 (4)
O4—C151.367 (3)C13—C141.379 (4)
O4—C211.406 (4)C13—H130.93
N1—C221.368 (3)C14—C151.377 (4)
N1—C51.481 (3)C14—H140.93
N1—C11.481 (3)C15—C161.378 (4)
C1—C121.513 (3)C16—C171.366 (5)
C1—C21.546 (3)C16—H160.93
C1—H10.9800C17—H170.93
C2—C31.509 (4)C18—H18A0.96
C2—C181.532 (4)C18—H18B0.96
C2—H20.98C18—H18C0.96
C3—C41.505 (4)C19—H19A0.96
C4—C51.526 (4)C19—H19B0.96
C4—C191.532 (4)C19—H19C0.96
C4—H40.98C20—H20A0.96
C5—C61.514 (4)C20—H20B0.96
C5—H50.98C20—H20C0.96
C6—C111.378 (4)C21—H21A0.96
C6—C71.392 (4)C21—H21B0.96
C7—C81.374 (4)C21—H21C0.96
C7—H70.93C22—C231.507 (4)
C8—C91.375 (5)C23—H23A0.97
C8—H80.93C23—H23B0.97
C9—C101.380 (4)
C9—O3—C20118.8 (3)C13—C12—C1122.4 (2)
C15—O4—C21117.8 (2)C17—C12—C1120.0 (2)
C22—N1—C5116.5 (2)C14—C13—C12121.0 (2)
C22—N1—C1123.0 (2)C14—C13—H13119.5
C5—N1—C1119.5 (2)C12—C13—H13119.5
N1—C1—C12113.59 (19)C15—C14—C13120.2 (2)
N1—C1—C2111.07 (19)C15—C14—H14119.9
C12—C1—C2109.6 (2)C13—C14—H14119.9
N1—C1—H1107.5O4—C15—C14115.8 (2)
C12—C1—H1107.5O4—C15—C16124.7 (2)
C2—C1—H1107.5C14—C15—C16119.5 (3)
C3—C2—C18111.1 (2)C17—C16—C15119.7 (3)
C3—C2—C1112.8 (2)C17—C16—H16120.1
C18—C2—C1110.9 (2)C15—C16—H16120.1
C3—C2—H2107.3C16—C17—C12122.0 (3)
C18—C2—H2107.3C16—C17—H17119.0
C1—C2—H2107.3C12—C17—H17119.0
O2—C3—C4120.8 (3)C2—C18—H18A109.5
O2—C3—C2122.3 (3)C2—C18—H18B109.5
C4—C3—C2116.9 (2)H18A—C18—H18B109.5
C3—C4—C5111.6 (3)C2—C18—H18C109.5
C3—C4—C19107.9 (3)H18A—C18—H18C109.5
C5—C4—C19111.5 (2)H18B—C18—H18C109.5
C3—C4—H4108.6C4—C19—H19A109.5
C5—C4—H4108.6C4—C19—H19B109.5
C19—C4—H4108.6H19A—C19—H19B109.5
N1—C5—C6111.9 (2)C4—C19—H19C109.5
N1—C5—C4108.5 (2)H19A—C19—H19C109.5
C6—C5—C4117.8 (2)H19B—C19—H19C109.5
N1—C5—H5105.9O3—C20—H20A109.5
C6—C5—H5105.9O3—C20—H20B109.5
C4—C5—H5105.9H20A—C20—H20B109.5
C11—C6—C7117.2 (3)O3—C20—H20C109.5
C11—C6—C5118.5 (2)H20A—C20—H20C109.5
C7—C6—C5124.2 (2)H20B—C20—H20C109.5
C8—C7—C6121.1 (3)O4—C21—H21A109.5
C8—C7—H7119.4O4—C21—H21B109.5
C6—C7—H7119.4H21A—C21—H21B109.5
C7—C8—C9120.8 (3)O4—C21—H21C109.5
C7—C8—H8119.6H21A—C21—H21C109.5
C9—C8—H8119.6H21B—C21—H21C109.5
O3—C9—C8115.4 (3)O1—C22—N1122.6 (2)
O3—C9—C10125.2 (3)O1—C22—C23118.8 (2)
C8—C9—C10119.4 (3)N1—C22—C23118.6 (2)
C9—C10—C11119.1 (3)C22—C23—Br1109.78 (17)
C9—C10—H10120.5C22—C23—H23A109.7
C11—C10—H10120.5Br1—C23—H23A109.7
C6—C11—C10122.3 (3)C22—C23—H23B109.7
C6—C11—H11118.9Br1—C23—H23B109.7
C10—C11—H11118.9H23A—C23—H23B108.2
C13—C12—C17117.5 (2)
C22—N1—C1—C1266.9 (3)C20—O3—C9—C8−174.0 (3)
C5—N1—C1—C12−125.1 (2)C20—O3—C9—C106.3 (5)
C22—N1—C1—C2−169.1 (2)C7—C8—C9—O3−179.1 (3)
C5—N1—C1—C2−1.1 (3)C7—C8—C9—C100.6 (4)
N1—C1—C2—C345.3 (3)O3—C9—C10—C11178.2 (3)
C12—C1—C2—C3171.6 (2)C8—C9—C10—C11−1.6 (4)
N1—C1—C2—C18170.6 (2)C7—C6—C11—C100.8 (4)
C12—C1—C2—C18−63.1 (3)C5—C6—C11—C10177.7 (3)
C18—C2—C3—O216.2 (4)C9—C10—C11—C60.9 (4)
C1—C2—C3—O2141.4 (3)N1—C1—C12—C1348.1 (3)
C18—C2—C3—C4−163.2 (3)C2—C1—C12—C13−76.8 (3)
C1—C2—C3—C4−38.0 (3)N1—C1—C12—C17−135.1 (2)
O2—C3—C4—C5167.3 (3)C2—C1—C12—C17100.1 (3)
C2—C3—C4—C5−13.3 (4)C17—C12—C13—C141.7 (4)
O2—C3—C4—C19−69.9 (4)C1—C12—C13—C14178.6 (2)
C2—C3—C4—C19109.5 (3)C12—C13—C14—C15−0.2 (4)
C22—N1—C5—C6−109.2 (2)C21—O4—C15—C14−164.6 (3)
C1—N1—C5—C682.0 (3)C21—O4—C15—C1616.4 (4)
C22—N1—C5—C4119.1 (2)C13—C14—C15—O4179.3 (2)
C1—N1—C5—C4−49.7 (3)C13—C14—C15—C16−1.7 (4)
C3—C4—C5—N155.9 (3)O4—C15—C16—C17−179.0 (3)
C19—C4—C5—N1−64.8 (3)C14—C15—C16—C172.1 (4)
C3—C4—C5—C6−72.5 (3)C15—C16—C17—C12−0.6 (5)
C19—C4—C5—C6166.8 (2)C13—C12—C17—C16−1.3 (4)
N1—C5—C6—C1158.9 (3)C1—C12—C17—C16−178.3 (3)
C4—C5—C6—C11−174.3 (2)C5—N1—C22—O17.8 (4)
N1—C5—C6—C7−124.5 (3)C1—N1—C22—O1176.2 (2)
C4—C5—C6—C72.3 (4)C5—N1—C22—C23−172.4 (2)
C11—C6—C7—C8−1.8 (4)C1—N1—C22—C23−4.0 (4)
C5—C6—C7—C8−178.4 (3)O1—C22—C23—Br1−98.9 (3)
C6—C7—C8—C91.1 (5)N1—C22—C23—Br181.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.982.823.523 (3)129
C20—H20C···O1i0.962.603.357 (7)136

Symmetry codes: (i) x−1, −y+1, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2672).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Aridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008b). Arkivoc, XV, 133–158.
  • Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007b). Eur. J. Med. Chem.42, 851–860. [PubMed]
  • Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007a). Med. Chem. Res.16, 188–204.
  • Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2008a). Eur. J. Med. Chem.10, doi:10.1016/j.ejmech.2008.03.031.
  • Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053–2054.
  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bylov, I. E., Vasylev, M. V. & Bilokin, Y. V. (1999). Eur. J. Med. Chem.34, 997–1001. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dollery, C. (1999). Therapeutic Drugs Edinburgh, Scotland: Churchill Livingstone.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev.103, 893–930. [PubMed]
  • Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem.177, 237–243. [PubMed]
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • O’Hagan, D. (2000). Nat. Prod. Rep.17, 435–446. [PubMed]
  • Pinder, A. R. (1992). Nat. Prod. Rep.9, 491–504.
  • Priya, B. S., Anil Kumar, C., Nanjunda Swamy, S., Basappa, S., Naveen, S., Shashidhara Prasad, J. & Rangappa, K. S. (2007). Bioorg. Med. Chem. Lett.17, 2775–2780. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography