PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2044.
Published online 2008 September 30. doi:  10.1107/S1600536808030924
PMCID: PMC2959449

4-(4-Carb­oxy-1,3-thia­zol-2-yl)pyridinium 3-carb­oxy-4-hydroxy­benzene­sulfonate dihydrate

Abstract

In the crystal structure of the title compound, C9H7N2O2S+·C7H5O6S·2H2O, an H atom from the 5-sulfosalicylic acid is transferred to the pyridyl N atom, forming a salt. The dihedral angle between the thiazole and pyridinium rings is 5.909 (5)°. The crystal packing is determined by O—H(...)O and N—H(...)O hydrogen bonds involving water mol­ecules.

Related literature

For related structures, see: Chen et al. (2007 [triangle]); Ellsworth et al. (2006 [triangle]); Su et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2044-scheme1.jpg

Experimental

Crystal data

  • C9H7N2O2S+·C7H5O6S·2H2O
  • M r = 460.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2044-efi1.jpg
  • a = 8.6234 (14) Å
  • b = 10.6065 (17) Å
  • c = 10.7979 (17) Å
  • α = 97.799 (2)°
  • β = 94.479 (2)°
  • γ = 99.885 (2)°
  • V = 958.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 291 (2) K
  • 0.44 × 0.29 × 0.24 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.867, T max = 0.924
  • 7016 measured reflections
  • 3494 independent reflections
  • 3095 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.092
  • S = 1.03
  • 3494 reflections
  • 275 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030924/kp2193sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030924/kp2193Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

supplementary crystallographic information

Comment

2-(4-Pyridyl)thiazole-4-carboxylic acid (HPTCA), which is an asymmetric, chelating ligand, has been studied in recent years. Five of its transition metal complexes (Chen et al., 2007; Ellsworth et al., 2006; Su et al., 2004) were reported. In this paper we describe its salt with 5-sulfosalicylic acid (H3SSA), (I).

The crystal structure of the title molecule comprises 2-(4-pyridylomium)thiazole-4-carboxylic acid, a 5-sulfosalicylic acid anion and two water molecules (Fig.1). The H atom of the 5-sulfosalicylic acid is transferred to the pyridyl N-atom of 2-(4-pyridyl)thiazole-4-carboxylic acid, thus forming a salt. The dihedral angle between the thiazole and pyridinium rings is 5.909 (5)°. The N—H and O—H groups are involved in intra- and intermolecular hydrogen bonds with water molecules generating the 3-dimensional hydrogen bond network (Table 1 and Fig. 2).

Experimental

The ligand HPTCA (1 mmol, 0.21 g) and H3SSA.2H2O (1 mmol, 0.25 g) were dissolved in solvent mixture of water and methanol (20 mL, v/v 1:1). To this solution, Cu(CH3COO)2.4H2O (1 mmol, 0.26 g) was added and the resulting mixture was stirred and refluxed at 353 K for 3 h, then cooled to room temperature. After filtration and evaporation in air for five days, colourless claviform-shaped crystals were obtained in a yield of 43%. Analysis, found (%): C, 41.75; H, 3.51; N, 6.02; S,13.87. C16H16N2O10S2 requires (%): C,41.70; H,3.47; N,6.08; S,13.90. (The elemental analysis indicates that the copper(II) is not coordinated by the ligands) (CCDC number 685021)

Refinement

H Atoms bonded to C or N atoms were positioned geometrically with C—H distance of 0.93Å and N—H distance of 0.86 Å, and treated as riding atoms, with Uiso(H)=1.2Ueq(C or N). H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of (I), showing hydrogen bonds as dashed lines. For the sake of clarity, H atoms on C atoms have been omitted.

Crystal data

C9H7N2O2S+·C7H5O6S·2H2OZ = 2
Mr = 460.43F(000) = 476
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6234 (14) ÅCell parameters from 4068 reflections
b = 10.6065 (17) Åθ = 2.4–28.1°
c = 10.7979 (17) ŵ = 0.34 mm1
α = 97.799 (2)°T = 291 K
β = 94.479 (2)°Claviform, colourless
γ = 99.885 (2)°0.44 × 0.29 × 0.24 mm
V = 958.7 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3494 independent reflections
Radiation source: fine-focus sealed tube3095 reflections with I > 2σ(I)
graphiteRint = 0.014
[var phi] and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.867, Tmax = 0.924k = −12→12
7016 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092w = 1/[σ2(Fo2) + (0.0504P)2 + 0.314P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3494 reflectionsΔρmax = 0.31 e Å3
275 parametersΔρmin = −0.29 e Å3
6 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.25056 (5)0.11285 (4)0.35763 (4)0.03667 (14)
S21.01768 (5)0.41512 (5)0.19381 (4)0.04482 (15)
O10.52983 (18)0.53943 (14)0.76634 (12)0.0532 (4)
H10.49630.60580.75740.080*
O20.34176 (16)0.67695 (12)0.67191 (12)0.0472 (3)
O30.18259 (15)0.59188 (11)0.49653 (12)0.0432 (3)
H30.16830.66670.49980.065*
O40.30140 (18)0.15439 (12)0.24126 (12)0.0513 (4)
O50.07938 (16)0.09571 (14)0.35499 (15)0.0595 (4)
O60.31219 (19)0.00026 (13)0.38592 (14)0.0577 (4)
O70.61923 (18)0.12933 (14)−0.10879 (16)0.0643 (4)
O80.81979 (18)0.03591 (13)−0.04892 (13)0.0525 (4)
H80.7748−0.0241−0.10270.079*
O90.11825 (18)0.81397 (13)0.48548 (15)0.0566 (4)
H1W0.18510.87570.46880.085*
H2W0.06480.84310.53970.085*
O100.35251 (19)0.94663 (14)0.77184 (18)0.0746 (5)
H3W0.30660.89010.71600.112*
H4W0.44770.96180.77420.112*
N10.77420 (17)0.36608 (13)0.03035 (13)0.0356 (3)
N20.7588 (2)0.83610 (15)0.15551 (16)0.0488 (4)
H2D0.73490.91200.16600.059*
C10.33096 (19)0.24035 (15)0.48162 (15)0.0324 (4)
C20.4457 (2)0.22332 (18)0.57360 (17)0.0398 (4)
H20.47930.14440.57090.048*
C30.5089 (2)0.32448 (19)0.66860 (17)0.0428 (4)
H3A0.58490.31300.73000.051*
C40.4600 (2)0.44306 (17)0.67308 (15)0.0368 (4)
C50.34238 (19)0.46005 (15)0.58262 (14)0.0310 (3)
C60.27899 (19)0.35698 (15)0.48679 (15)0.0312 (3)
H60.20130.36720.42610.037*
C70.28871 (19)0.58539 (16)0.58768 (15)0.0336 (4)
C80.7104 (2)0.62363 (17)0.04650 (16)0.0396 (4)
H8A0.65380.5612−0.01730.048*
C90.6759 (2)0.74537 (19)0.06439 (18)0.0473 (5)
H90.59460.76550.01320.057*
C100.8772 (3)0.81171 (18)0.23019 (19)0.0517 (5)
H100.93340.87690.29170.062*
C110.9166 (2)0.69063 (18)0.21681 (18)0.0456 (4)
H110.99930.67380.26880.055*
C120.8314 (2)0.59344 (16)0.12459 (15)0.0342 (4)
C130.8626 (2)0.46044 (16)0.10910 (15)0.0336 (4)
C140.8288 (2)0.25269 (16)0.03559 (15)0.0354 (4)
C150.9591 (2)0.26100 (18)0.11859 (17)0.0420 (4)
H151.00880.19210.13200.050*
C160.7430 (2)0.13402 (17)−0.04781 (17)0.0402 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0437 (3)0.0231 (2)0.0418 (3)0.00772 (17)0.00411 (18)−0.00162 (17)
S20.0427 (3)0.0475 (3)0.0405 (3)0.0097 (2)−0.01003 (19)0.0000 (2)
O10.0644 (9)0.0472 (8)0.0389 (7)0.0037 (7)−0.0181 (6)−0.0035 (6)
O20.0590 (8)0.0326 (7)0.0432 (7)0.0049 (6)−0.0022 (6)−0.0095 (6)
O30.0501 (7)0.0283 (6)0.0480 (7)0.0111 (5)−0.0082 (6)−0.0028 (5)
O40.0753 (10)0.0361 (7)0.0368 (7)0.0011 (6)0.0047 (6)−0.0024 (5)
O50.0440 (8)0.0457 (8)0.0774 (10)0.0017 (6)0.0034 (7)−0.0207 (7)
O60.0805 (10)0.0317 (7)0.0647 (9)0.0235 (7)0.0058 (8)0.0046 (6)
O70.0581 (9)0.0427 (8)0.0821 (11)0.0191 (7)−0.0240 (8)−0.0207 (7)
O80.0696 (9)0.0377 (7)0.0499 (8)0.0260 (7)−0.0084 (7)−0.0067 (6)
O90.0660 (9)0.0342 (7)0.0736 (10)0.0169 (6)0.0145 (7)0.0081 (7)
O100.0556 (9)0.0383 (8)0.1174 (14)0.0034 (7)0.0108 (9)−0.0263 (8)
N10.0414 (8)0.0307 (7)0.0332 (7)0.0090 (6)−0.0031 (6)0.0001 (6)
N20.0659 (11)0.0289 (8)0.0519 (10)0.0092 (7)0.0134 (8)0.0022 (7)
C10.0370 (9)0.0281 (8)0.0322 (8)0.0062 (7)0.0051 (7)0.0034 (7)
C20.0419 (10)0.0378 (9)0.0430 (10)0.0134 (8)0.0039 (8)0.0106 (8)
C30.0404 (10)0.0505 (11)0.0380 (9)0.0094 (8)−0.0043 (7)0.0126 (8)
C40.0390 (9)0.0404 (9)0.0278 (8)0.0010 (7)0.0002 (7)0.0039 (7)
C50.0338 (8)0.0298 (8)0.0281 (8)0.0026 (7)0.0052 (6)0.0028 (6)
C60.0342 (8)0.0295 (8)0.0285 (8)0.0053 (6)−0.0008 (6)0.0027 (6)
C70.0359 (8)0.0297 (8)0.0321 (8)0.0002 (7)0.0055 (7)0.0003 (7)
C80.0465 (10)0.0344 (9)0.0352 (9)0.0076 (8)−0.0003 (7)−0.0023 (7)
C90.0567 (12)0.0403 (10)0.0457 (11)0.0141 (9)0.0041 (9)0.0033 (8)
C100.0633 (13)0.0330 (10)0.0494 (11)−0.0050 (9)0.0027 (10)−0.0075 (8)
C110.0500 (11)0.0388 (10)0.0412 (10)0.0005 (8)−0.0061 (8)−0.0026 (8)
C120.0398 (9)0.0319 (9)0.0286 (8)0.0022 (7)0.0049 (7)0.0009 (7)
C130.0374 (9)0.0341 (9)0.0277 (8)0.0054 (7)0.0006 (7)0.0024 (7)
C140.0416 (9)0.0334 (9)0.0325 (8)0.0118 (7)0.0026 (7)0.0036 (7)
C150.0448 (10)0.0421 (10)0.0411 (10)0.0171 (8)0.0002 (8)0.0043 (8)
C160.0475 (10)0.0329 (9)0.0407 (10)0.0147 (8)0.0007 (8)−0.0001 (7)

Geometric parameters (Å, °)

S1—O61.4469 (14)C1—C61.382 (2)
S1—O51.4535 (14)C1—C21.398 (2)
S1—O41.4613 (14)C2—C31.383 (3)
S1—C11.7731 (17)C2—H20.9300
S2—C151.6968 (19)C3—C41.390 (3)
S2—C131.7334 (17)C3—H3A0.9300
O1—C41.355 (2)C4—C51.404 (2)
O1—H10.8200C5—C61.401 (2)
O2—C71.234 (2)C5—C71.476 (2)
O3—C71.308 (2)C6—H60.9300
O3—H30.8200C8—C91.366 (3)
O7—C161.199 (2)C8—C121.397 (2)
O8—C161.325 (2)C8—H8A0.9300
O8—H80.8200C9—H90.9300
O9—H1W0.8436C10—C111.376 (3)
O9—H2W0.8319C10—H100.9300
O10—H3W0.8145C11—C121.393 (2)
O10—H4W0.8065C11—H110.9300
N1—C131.308 (2)C12—C131.471 (2)
N1—C141.371 (2)C14—C151.365 (2)
N2—C101.333 (3)C14—C161.487 (2)
N2—C91.342 (3)C15—H150.9300
N2—H2D0.8600
O6—S1—O5113.03 (9)C1—C6—H6119.7
O6—S1—O4112.45 (9)C5—C6—H6119.7
O5—S1—O4110.37 (9)O2—C7—O3122.98 (16)
O6—S1—C1106.53 (8)O2—C7—C5121.86 (16)
O5—S1—C1106.90 (8)O3—C7—C5115.17 (14)
O4—S1—C1107.15 (8)C9—C8—C12119.66 (17)
C15—S2—C1389.46 (8)C9—C8—H8A120.2
C4—O1—H1109.5C12—C8—H8A120.2
C7—O3—H3109.5N2—C9—C8120.27 (18)
C16—O8—H8109.5N2—C9—H9119.9
H1W—O9—H2W108.7C8—C9—H9119.9
H3W—O10—H4W115.9N2—C10—C11120.40 (17)
C13—N1—C14110.35 (14)N2—C10—H10119.8
C10—N2—C9121.80 (17)C11—C10—H10119.8
C10—N2—H2D119.1C10—C11—C12119.39 (18)
C9—N2—H2D119.1C10—C11—H11120.3
C6—C1—C2120.15 (15)C12—C11—H11120.3
C6—C1—S1119.39 (12)C11—C12—C8118.45 (16)
C2—C1—S1120.46 (13)C11—C12—C13122.13 (16)
C3—C2—C1119.70 (16)C8—C12—C13119.41 (15)
C3—C2—H2120.2N1—C13—C12122.45 (15)
C1—C2—H2120.2N1—C13—S2114.42 (13)
C2—C3—C4120.60 (16)C12—C13—S2123.13 (12)
C2—C3—H3A119.7N1—C14—C15115.53 (16)
C4—C3—H3A119.7N1—C14—C16118.19 (14)
O1—C4—C3117.74 (15)C15—C14—C16126.27 (16)
O1—C4—C5122.23 (16)C14—C15—S2110.25 (13)
C3—C4—C5120.04 (16)C14—C15—H15124.9
C4—C5—C6118.92 (15)S2—C15—H15124.9
C4—C5—C7120.28 (15)O7—C16—O8124.15 (17)
C6—C5—C7120.79 (15)O7—C16—C14123.19 (16)
C1—C6—C5120.57 (15)O8—C16—C14112.65 (15)
O6—S1—C1—C6−173.04 (13)C12—C8—C9—N20.8 (3)
O5—S1—C1—C6−51.93 (16)C9—N2—C10—C11−0.9 (3)
O4—S1—C1—C666.39 (15)N2—C10—C11—C12−0.1 (3)
O6—S1—C1—C26.85 (17)C10—C11—C12—C81.5 (3)
O5—S1—C1—C2127.96 (15)C10—C11—C12—C13−177.15 (17)
O4—S1—C1—C2−113.72 (15)C9—C8—C12—C11−1.8 (3)
C6—C1—C2—C3−1.1 (3)C9—C8—C12—C13176.87 (16)
S1—C1—C2—C3179.01 (13)C14—N1—C13—C12−179.49 (15)
C1—C2—C3—C4−0.3 (3)C14—N1—C13—S20.04 (18)
C2—C3—C4—O1−178.07 (16)C11—C12—C13—N1173.78 (16)
C2—C3—C4—C51.7 (3)C8—C12—C13—N1−4.8 (2)
O1—C4—C5—C6178.11 (15)C11—C12—C13—S2−5.7 (2)
C3—C4—C5—C6−1.6 (2)C8—C12—C13—S2175.67 (13)
O1—C4—C5—C7−0.9 (3)C15—S2—C13—N1−0.04 (14)
C3—C4—C5—C7179.36 (15)C15—S2—C13—C12179.49 (15)
C2—C1—C6—C51.1 (2)C13—N1—C14—C150.0 (2)
S1—C1—C6—C5−178.97 (12)C13—N1—C14—C16−179.94 (15)
C4—C5—C6—C10.2 (2)N1—C14—C15—S20.0 (2)
C7—C5—C6—C1179.24 (14)C16—C14—C15—S2179.90 (15)
C4—C5—C7—O2−1.7 (2)C13—S2—C15—C140.02 (14)
C6—C5—C7—O2179.26 (15)N1—C14—C16—O7−8.5 (3)
C4—C5—C7—O3177.84 (15)C15—C14—C16—O7171.6 (2)
C6—C5—C7—O3−1.2 (2)N1—C14—C16—O8170.21 (15)
C10—N2—C9—C80.6 (3)C15—C14—C16—O8−9.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.882.599 (2)146.
O3—H3···O90.821.712.5269 (17)171.
O8—H8···O4i0.821.892.6979 (18)171.
O9—H1W···O6ii0.841.932.753 (2)165.
O9—H2W···O5iii0.831.892.713 (2)172.
O10—H3W···O20.812.322.9001 (19)129.
O10—H4W···O7iv0.812.272.835 (2)128.
N2—H2D···O10v0.861.862.689 (2)162.

Symmetry codes: (i) −x+1, −y, −z; (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) x, y+1, z+1; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2193).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X. D., Wu, H. F., Zhao, X. H., Zhao, X. J. & Du, M. (2007). Cryst. Growth Des.7, 124–131.
  • Ellsworth, J. M., Su, C. Y., Khaliq, Z., Hipp, R. E., Goforth, A. M., Smith, M. D. & Loye, H. C. (2006). J. Mol. Struct.796, 86–94.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, C. Y., Smith, M. D., Goforth, A. M. & Loye, H. C. (2004). Inorg. Chem.43, 6881–6883. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography