PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2045.
Published online 2008 September 30. doi:  10.1107/S1600536808030948
PMCID: PMC2959447

Methyl 3-hydr­oxy-4-oxo-3,4-dihydro-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide monohydrate

Abstract

In the mol­ecule of the title compound, C10H9NO6S·H2O, the benzothia­zine ring adopts an envelope conformation. An intra­molecular N—H(...)O hydrogen bond results in the formation of a nonplanar five-membered ring which has a twisted conformation. In the crystal structure, inter­molecular N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules to form a three-dimensional network. There is a π–π contact between the benzene rings [centroid–centroid distance = 3.972 (2) Å].

Related literature

For general background, see: Shafiq, Khan et al. (2008 [triangle]); Shafiq, Tahir et al. (2008 [triangle]); Tahir et al. (2008 [triangle]). For related literature, see: Antsyshkina et al. (2003 [triangle]); Allen (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2045-scheme1.jpg

Experimental

Crystal data

  • C10H9NO6S·H2O
  • M r = 289.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2045-efi1.jpg
  • a = 7.7504 (5) Å
  • b = 14.5638 (9) Å
  • c = 21.0615 (14) Å
  • V = 2377.3 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 (2) K
  • 0.24 × 0.18 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.934, T max = 0.958
  • 14889 measured reflections
  • 2998 independent reflections
  • 1895 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.122
  • S = 1.01
  • 2998 reflections
  • 184 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030948/hk2537sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030948/hk2537Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Muhammad Nadeem Arshad gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a scholarship under the Indigenous PhD Program (PIN 042-120607-PS2-183).

supplementary crystallographic information

Comment

The title compound has been prepared in continuation of research on benzo- thiazine derivatives (Shafiq, Khan et al., 2008; Shafiq, Tahir et al., 2008; Tahir et al., 2008) by our research group. The CCDC search (Allen, 2002) shows that a single crystal structure has been reported, in which the same benzothiazine ring exists (Antsyshkina et al., 2003). The title compound differs from the reported structure, due to the hydroxy and methylformate groups. Due to the hydroxy group, the S-configuration in the title compound has been confirmed.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Ring B (S1/N1/C1/C6-C8) is not planar, having total puckering amplitude, QT, of 0.733 (3) Å and envelope conformation [[var phi] = 21.21 (3)° and θ = 76.70 (3)°] (Cremer & Pople, 1975) with N1 atom displaced by 0.575 (3) Å from the plane of the other ring atoms. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a nonplanar five-membered ring C (N1/O6/C8/C9/H1), having twisted conformation.

In the crystal structure, intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules to form a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π—π contact between the benzene rings, Cg2···Cg2i [symmetry code: (i) -1/2 + x, y, 1/2 - z, where Cg2 is the centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.972 (2) Å.

Experimental

For the preparation of the title compound, methyl 4-hydroxy-2H-1,2 -benzothiazine-3-carboxylate 1,1-dioxide (0.5 g, 1.95 mmol), N-bromo- succinamide (0.38 g, 2.145 mmol) and dibenzoyl peroxide (0.035 g, 0.15 mmol) were added in CCl4 (10 ml). The mixture was refluxed for 2 h. After the completion of reaction, CCl4 was distilled off under vacuum. The obtained residue was washed with hot water to remove other impurities. The solid product was recrystallized in water and methanol to obtain the suitable crystals for x-ray analysis.

Refinement

H atoms were located in difference syntheses and refined as [O-H = 0.84 (3) Å (for OH); O-H = 0.83 (3) and 0.83 (4) Å (for H2O); N-H = 0.78 (3) Å (for NH). The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dotted lines.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H9NO6S·H2OF(000) = 1200
Mr = 289.26Dx = 1.616 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2998 reflections
a = 7.7504 (5) Åθ = 3.0–28.5°
b = 14.5638 (9) ŵ = 0.30 mm1
c = 21.0615 (14) ÅT = 296 K
V = 2377.3 (3) Å3Prismatic, colourless
Z = 80.24 × 0.18 × 0.15 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2998 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
graphiteRint = 0.065
Detector resolution: 7.40 pixels mm-1θmax = 28.5°, θmin = 3.0°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −19→10
Tmin = 0.934, Tmax = 0.958l = −28→27
14889 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0491P)2 + 1.1022P] where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.18084 (8)0.12546 (4)0.08206 (3)0.0314 (2)
O10.0037 (3)0.32676 (13)0.21865 (9)0.0568 (8)
O20.3475 (2)0.15746 (13)0.06338 (9)0.0450 (7)
O30.1137 (3)0.04539 (12)0.05197 (9)0.0450 (6)
O40.2024 (2)0.33701 (12)0.09947 (10)0.0360 (6)
H4O0.204 (4)0.3501 (19)0.0608 (14)0.0432*
O5−0.0985 (3)0.42862 (12)0.08273 (10)0.0460 (7)
O6−0.2498 (2)0.30222 (13)0.10613 (9)0.0413 (6)
O70.7145 (3)0.10998 (15)0.02689 (11)0.0481 (7)
H710.731 (4)0.054 (2)0.0226 (15)0.0577*
H720.615 (5)0.116 (2)0.0412 (16)0.0577*
N10.0398 (3)0.20645 (14)0.07099 (10)0.0308 (6)
H1−0.052 (4)0.1857 (18)0.0675 (13)0.0370*
C10.1243 (3)0.17959 (16)0.20533 (12)0.0298 (7)
C20.1294 (4)0.16328 (19)0.27020 (13)0.0414 (9)
H20.090910.208300.298120.0497*
C30.1908 (4)0.0814 (2)0.29384 (14)0.0518 (10)
H30.193480.071640.337460.0623*
C40.2479 (5)0.0141 (2)0.25324 (15)0.0525 (10)
H40.28955−0.040930.269590.0629*
C50.2440 (4)0.02761 (18)0.18834 (14)0.0444 (9)
H50.28239−0.018040.160880.0533*
C60.1824 (3)0.10985 (16)0.16477 (12)0.0306 (7)
C70.0552 (3)0.26875 (16)0.18234 (12)0.0319 (8)
C80.0514 (3)0.28972 (15)0.11076 (11)0.0284 (7)
C9−0.1075 (3)0.35000 (17)0.09736 (12)0.0312 (8)
C10−0.4122 (3)0.3507 (2)0.10026 (15)0.0500 (10)
H10A−0.505770.309000.107850.0750*
H10B−0.422070.375760.058250.0750*
H10C−0.416230.399630.130800.0750*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0315 (3)0.0292 (3)0.0334 (3)0.0025 (3)0.0002 (3)−0.0061 (3)
O10.0826 (16)0.0444 (11)0.0433 (12)0.0237 (12)−0.0002 (11)−0.0134 (9)
O20.0328 (11)0.0479 (11)0.0544 (12)0.0054 (9)0.0128 (9)−0.0020 (9)
O30.0591 (13)0.0327 (9)0.0433 (11)0.0012 (9)−0.0078 (10)−0.0121 (8)
O40.0240 (9)0.0376 (10)0.0463 (11)−0.0060 (8)−0.0014 (8)−0.0029 (9)
O50.0406 (12)0.0312 (10)0.0662 (14)0.0041 (8)−0.0023 (10)0.0090 (9)
O60.0220 (9)0.0402 (10)0.0618 (13)−0.0003 (8)0.0007 (9)0.0062 (9)
O70.0453 (13)0.0400 (10)0.0590 (14)−0.0025 (10)−0.0070 (10)0.0005 (10)
N10.0258 (11)0.0296 (10)0.0370 (12)−0.0008 (9)−0.0049 (10)−0.0052 (9)
C10.0261 (12)0.0291 (12)0.0342 (13)0.0004 (10)−0.0018 (10)−0.0021 (10)
C20.0470 (16)0.0411 (15)0.0362 (14)0.0006 (13)0.0007 (13)−0.0049 (12)
C30.063 (2)0.0559 (18)0.0364 (15)0.0002 (17)−0.0064 (15)0.0089 (14)
C40.067 (2)0.0393 (15)0.0513 (18)0.0054 (15)−0.0086 (16)0.0110 (14)
C50.0503 (17)0.0342 (14)0.0487 (17)0.0069 (13)−0.0052 (14)−0.0021 (13)
C60.0269 (12)0.0317 (12)0.0332 (13)0.0008 (11)−0.0037 (11)−0.0016 (10)
C70.0284 (13)0.0296 (12)0.0377 (14)0.0005 (10)−0.0013 (11)−0.0055 (11)
C80.0240 (12)0.0257 (11)0.0356 (14)−0.0001 (10)−0.0027 (10)−0.0041 (10)
C90.0272 (13)0.0331 (13)0.0332 (14)−0.0001 (11)−0.0003 (10)−0.0017 (10)
C100.0234 (14)0.0674 (19)0.0591 (19)0.0118 (14)−0.0015 (13)0.0030 (16)

Geometric parameters (Å, °)

S1—O21.4284 (17)C1—C71.486 (3)
S1—O31.426 (2)C1—C61.402 (3)
S1—N11.625 (2)C2—C31.377 (4)
S1—C61.757 (3)C3—C41.374 (4)
O1—C71.207 (3)C4—C51.381 (4)
O4—C81.379 (3)C5—C61.382 (4)
O5—C91.188 (3)C7—C81.539 (3)
O6—C91.317 (3)C8—C91.539 (3)
O6—C101.449 (3)C2—H20.9300
O4—H4O0.84 (3)C3—H30.9300
O7—H710.83 (3)C4—H40.9300
O7—H720.83 (4)C5—H50.9300
N1—C81.477 (3)C10—H10C0.9600
N1—H10.78 (3)C10—H10A0.9600
C1—C21.387 (4)C10—H10B0.9600
S1···H10Bi3.0600N1···O62.744 (3)
O1···O42.949 (3)N1···O7xii3.032 (3)
O1···O63.099 (3)C3···C5x3.570 (4)
O1···C4ii3.406 (4)C4···O1ix3.418 (4)
O1···C4iii3.418 (4)C4···O1xiii3.405 (4)
O2···O42.946 (3)C5···C3xi3.570 (4)
O2···O73.027 (3)C5···O4ix3.374 (3)
O2···C9i3.405 (3)C9···O2vii3.405 (3)
O3···C10iv3.393 (3)C10···O4xii2.994 (3)
O3···O7v3.107 (3)C10···O3xiv3.393 (3)
O3···O3vi3.106 (3)C10···H4Oxii3.09 (3)
O4···O52.710 (3)C10···H2x2.9800
O4···C5iii3.374 (3)H1···O62.43 (3)
O4···O7vii2.773 (3)H1···O7xii2.29 (3)
O4···O22.946 (3)H2···H10Axi2.5800
O4···O12.949 (3)H2···O12.5000
O4···C10viii2.994 (3)H2···O6xi2.7300
O5···O7iii3.028 (3)H2···C10xi2.9800
O5···O42.710 (3)H3···O7x2.9200
O6···N12.744 (3)H3···O5xiii2.7800
O6···O13.099 (3)H4···H10Cxiii2.4700
O7···N1viii3.032 (3)H4···O1ix2.7300
O7···O5ix3.028 (3)H4O···C10viii3.09 (3)
O7···O4i2.773 (3)H4O···H10Aviii2.5300
O7···O3v3.107 (3)H4O···O52.65 (3)
O7···O23.027 (3)H4O···O7vii1.94 (3)
O1···H4iii2.7300H4O···H71vii2.25 (4)
O1···H22.5000H4O···H72vii2.31 (4)
O2···H722.21 (4)H5···O32.8000
O2···H10Aviii2.6500H5···O4ix2.4800
O3···H10Bi2.6000H10A···O2xii2.6500
O3···H52.8000H10A···O4xii2.3100
O3···H71v2.45 (3)H10A···H2x2.5800
O3···H10Biv2.8900H10A···H4Oxii2.5300
O4···H5iii2.4800H10B···S1vii3.0600
O4···H10Aviii2.3100H10B···O3vii2.6000
O5···H4O2.65 (3)H10B···O52.6700
O5···H10B2.6700H10B···O3xiv2.8900
O5···H3ii2.7800H10C···O52.7000
O5···H72iii2.87 (3)H10C···H4ii2.4700
O5···H10C2.7000H71···H4Oi2.25 (4)
O5···H71iii2.45 (3)H71···O3v2.45 (3)
O6···H2x2.7300H71···O5ix2.45 (3)
O6···H12.43 (3)H72···O22.21 (4)
O7···H1viii2.29 (3)H72···H4Oi2.31 (5)
O7···H4Oi1.94 (3)H72···O5ix2.87 (3)
O7···H3xi2.9200
O2—S1—O3118.33 (12)O1—C7—C8118.4 (2)
O2—S1—N1109.39 (11)O4—C8—N1111.36 (19)
O2—S1—C6108.01 (11)O4—C8—C7104.59 (19)
O3—S1—N1106.53 (12)O4—C8—C9111.27 (18)
O3—S1—C6109.72 (11)N1—C8—C7113.20 (18)
N1—S1—C6103.94 (11)N1—C8—C9108.41 (19)
C9—O6—C10117.3 (2)C7—C8—C9107.96 (19)
C8—O4—H4O107 (2)O5—C9—C8123.4 (2)
H71—O7—H72107 (3)O6—C9—C8110.1 (2)
S1—N1—C8118.28 (17)O5—C9—O6126.5 (2)
C8—N1—H1115 (2)C3—C2—H2120.00
S1—N1—H1110 (2)C1—C2—H2120.00
C2—C1—C6117.8 (2)C2—C3—H3120.00
C2—C1—C7118.7 (2)C4—C3—H3120.00
C6—C1—C7123.4 (2)C5—C4—H4120.00
C1—C2—C3120.9 (3)C3—C4—H4120.00
C2—C3—C4120.3 (3)C4—C5—H5120.00
C3—C4—C5120.5 (3)C6—C5—H5120.00
C4—C5—C6119.1 (3)O6—C10—H10B109.00
S1—C6—C5118.1 (2)O6—C10—H10C109.00
S1—C6—C1120.56 (18)O6—C10—H10A110.00
C1—C6—C5121.4 (2)H10A—C10—H10C109.00
O1—C7—C1121.6 (2)H10B—C10—H10C109.00
C1—C7—C8120.0 (2)H10A—C10—H10B110.00
O2—S1—N1—C8−67.0 (2)C2—C1—C7—C8178.7 (2)
O3—S1—N1—C8163.98 (18)C6—C1—C7—O1178.8 (2)
C6—S1—N1—C848.1 (2)C6—C1—C7—C8−2.4 (3)
O2—S1—C6—C194.5 (2)C1—C2—C3—C4−0.2 (5)
O2—S1—C6—C5−84.8 (2)C2—C3—C4—C5−0.2 (5)
O3—S1—C6—C1−135.2 (2)C3—C4—C5—C60.2 (5)
O3—S1—C6—C545.5 (2)C4—C5—C6—S1179.4 (2)
N1—S1—C6—C1−21.6 (2)C4—C5—C6—C10.1 (4)
N1—S1—C6—C5159.1 (2)O1—C7—C8—O484.6 (3)
C10—O6—C9—O5−3.0 (4)O1—C7—C8—N1−154.0 (2)
C10—O6—C9—C8175.4 (2)O1—C7—C8—C9−33.9 (3)
S1—N1—C8—O464.3 (2)C1—C7—C8—O4−94.2 (2)
S1—N1—C8—C7−53.3 (3)C1—C7—C8—N127.2 (3)
S1—N1—C8—C9−173.01 (16)C1—C7—C8—C9147.2 (2)
C6—C1—C2—C30.5 (4)O4—C8—C9—O5−4.0 (3)
C7—C1—C2—C3179.4 (3)O4—C8—C9—O6177.6 (2)
C2—C1—C6—S1−179.7 (2)N1—C8—C9—O5−126.8 (3)
C2—C1—C6—C5−0.4 (4)N1—C8—C9—O654.8 (3)
C7—C1—C6—S11.4 (3)C7—C8—C9—O5110.2 (3)
C7—C1—C6—C5−179.3 (2)C7—C8—C9—O6−68.2 (2)
C2—C1—C7—O1−0.1 (4)

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1/2, y+1/2, z; (iv) −x−1/2, y−1/2, z; (v) −x+1, −y, −z; (vi) −x, −y, −z; (vii) x−1/2, −y+1/2, −z; (viii) x+1, y, z; (ix) −x+1/2, y−1/2, z; (x) x−1/2, y, −z+1/2; (xi) x+1/2, y, −z+1/2; (xii) x−1, y, z; (xiii) −x, y−1/2, −z+1/2; (xiv) −x−1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O60.78 (3)2.43 (3)2.744 (3)106 (2)
N1—H1···O7xii0.78 (3)2.29 (3)3.032 (3)162 (3)
O4—H4O···O7vii0.84 (3)1.94 (3)2.773 (3)175 (2)
O7—H71···O3v0.83 (3)2.45 (3)3.107 (3)137 (3)
O7—H71···O5ix0.83 (3)2.45 (3)3.028 (3)128 (3)
O7—H72···O20.83 (4)2.21 (4)3.027 (3)167 (3)
C5—H5···O4ix0.93002.48003.374 (3)162.00
C10—H10A···O4xii0.96002.31002.994 (3)128.00

Symmetry codes: (xii) x−1, y, z; (vii) x−1/2, −y+1/2, −z; (v) −x+1, −y, −z; (ix) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2537).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Antsyshkina, A. S., Sadikov, G. G., Korshunov, O. Yu., Anpilova, E. L., Bicherov, A. S., Sergienko, V. S., Uflyand, I. E. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem.29, 724–731.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558. [PMC free article] [PubMed]
  • Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography