PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1343.
Published online 2008 September 27. doi:  10.1107/S1600536808030663
PMCID: PMC2959446

Aqua­(picolinato N-oxide-κ2 O 1,O 2)(pyridine-2,6-dicarboxyl­ato-κ3 O,N,O′)iron(III) monohydrate

Abstract

In the title compound, [Fe(C6H4NO3)(C7H3NO4)(H2O)]·H2O, the FeIII ion is coordinated by two O and one N atoms from a pyridine-2,6-dicarboxyl­ate ligand, by two O atoms from a picolinate N-oxide ligand and by one water O atom in a distorted octa­hedral geometry [Fe—O = 1.940 (3)–2.033 (3) Å and Fe—N = 2.057 (4) Å]. In the crystal structure, the coordinated and solvent water mol­ecules contribute to the formation of O—H(...)O hydrogen bonds, which link the mol­ecules into layers parallel to the ab plane.

Related literature

For related crystal structures, see: Lainé et al. (1995 [triangle]); Wu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1343-scheme1.jpg

Experimental

Crystal data

  • [Fe(C6H4NO3)(C7H3NO4)(H2O)]·H2O
  • M r = 395.09
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1343-efi1.jpg
  • a = 6.6023 (13) Å
  • b = 7.7256 (16) Å
  • c = 15.520 (3) Å
  • α = 102.585 (4)°
  • β = 95.801 (4)°
  • γ = 105.743 (4)°
  • V = 732.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 293 (2) K
  • 0.16 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.84, T max = 0.87
  • 3915 measured reflections
  • 2749 independent reflections
  • 1667 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.096
  • S = 0.85
  • 2749 reflections
  • 238 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030663/cv2445sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030663/cv2445Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, the 2D zinc(II) and 1D copper(II) complexes with pyridine-2,6-dicarboxylic acid N-oxide and dicarboxylato ligands were reported by Wu et al. (2007). As a contribution to this area, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the FeIII ion is coordinated by two O and one N atoms from pyridine-2,6-dicarboxylato ligand, two O atoms from picolinato-N-oxide ligand, and one water molecule in a distorted octahedral geometry. Atoms O1, O4, O7 and N1 lie in equatorial plane, with the O1—N1—O4—O7 torsion angle of 1.94 (15)°, while Fe1 deviates from the equatorial plane at 0.057 Å. Atoms O5 and O8 occupy the axial sites with the angle O5—Fe1—O8 of 167.93 (14)°. The bond lengths and angles in (I) are similar to those in the related FeIII complex (Lainé et al.,1995).

In the crystal, the coordinated and crystalline water molecules contribute to the formation of O—H···O hydrogen bonds (Table 1, Fig. 2), which link the molecules into the layers parallel to ab plane.

Experimental

A mixture of Fe2(SO4)3(0.5 mmol), pyco (0.5 mmol), pydc (0.50 mmol), and H2O (3.00 ml), was placed in a Parr Teflon-lined stainless steel vessel (10 ml), and then the vessel was sealed and heated at 393 K for 3 d. After the mixture was slowly cooled to room temperature, several red crystals of (I) were obtained.

Refinement

C-bound H atoms were introduced at calculated positions (C—H 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.85 (3) and 1.39 (3) Å, respectively, and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
Fig. 2.
A portion of the crystal packing showing H-bonds as dashed lines.

Crystal data

[Fe(C6H4NO3)(C7H3NO4)(H2O)]·H2OZ = 2
Mr = 395.09F(000) = 402
Triclinic, P1Dx = 1.791 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6023 (13) ÅCell parameters from 544 reflections
b = 7.7256 (16) Åθ = 2.7–20.0°
c = 15.520 (3) ŵ = 1.09 mm1
α = 102.585 (4)°T = 293 K
β = 95.801 (4)°Block, red
γ = 105.743 (4)°0.16 × 0.14 × 0.12 mm
V = 732.7 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2749 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 25.8°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −8→7
Tmin = 0.84, Tmax = 0.87k = −9→9
3915 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.85w = 1/[σ2(Fo2) + (0.0145P)2] where P = (Fo2 + 2Fc2)/3
2749 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.49 e Å3
4 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.47020 (11)0.38418 (9)0.22899 (5)0.0363 (2)
N10.4982 (6)0.5619 (5)0.3522 (2)0.0317 (10)
N20.3098 (6)0.1709 (5)0.0392 (3)0.0358 (10)
O10.1839 (4)0.2941 (4)0.2682 (2)0.0404 (9)
O40.7711 (5)0.5595 (4)0.2520 (2)0.0439 (9)
O50.3665 (5)0.5275 (4)0.1559 (2)0.0497 (10)
O80.5897 (5)0.2107 (4)0.2796 (2)0.0450 (10)
H8A0.722 (5)0.241 (7)0.300 (3)0.067*
H8B0.553 (8)0.098 (4)0.276 (4)0.067*
C10.1473 (7)0.3772 (6)0.3417 (3)0.0344 (12)
C20.3323 (7)0.5401 (6)0.3952 (3)0.0293 (11)
C30.3435 (7)0.6559 (6)0.4769 (3)0.0408 (13)
H30.22690.64220.50660.049*
C40.5325 (8)0.7933 (6)0.5138 (3)0.0467 (14)
H40.54540.87340.56960.056*
C50.7012 (7)0.8134 (6)0.4693 (3)0.0448 (14)
H50.82940.90620.49450.054*
C60.6799 (7)0.6952 (6)0.3869 (3)0.0390 (13)
C70.8408 (8)0.6911 (7)0.3244 (4)0.0444 (14)
C80.3104 (8)0.5009 (7)0.0716 (4)0.0415 (13)
C90.2594 (7)0.3099 (6)0.0109 (3)0.0322 (12)
C100.1569 (7)0.2692 (7)−0.0765 (3)0.0444 (14)
H100.12150.3625−0.09790.053*
C110.1064 (8)0.0935 (7)−0.1323 (4)0.0501 (15)
H110.03910.0679−0.19130.060*
C120.1560 (8)−0.0406 (7)−0.1002 (4)0.0462 (14)
H120.1214−0.1602−0.13730.055*
C130.2553 (7)−0.0048 (6)−0.0149 (3)0.0377 (13)
H130.2863−0.09960.00680.045*
O2−0.0192 (5)0.3380 (4)0.3721 (2)0.0479 (10)
O31.0189 (5)0.8053 (5)0.3461 (2)0.0594 (11)
O60.2880 (6)0.6231 (5)0.0361 (3)0.0600 (11)
O70.4227 (5)0.1917 (4)0.1189 (2)0.0463 (9)
O90.3706 (6)0.8722 (5)0.2653 (3)0.0608 (12)
H9A0.249 (6)0.839 (7)0.283 (4)0.091*
H9B0.366 (9)0.771 (5)0.228 (3)0.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0375 (4)0.0354 (4)0.0324 (4)0.0069 (3)0.0085 (3)0.0053 (3)
N10.027 (2)0.031 (2)0.036 (3)0.0067 (18)0.0058 (19)0.0084 (19)
N20.031 (2)0.046 (3)0.028 (3)0.007 (2)0.0038 (19)0.011 (2)
O10.0294 (19)0.040 (2)0.035 (2)−0.0034 (15)0.0042 (16)−0.0056 (16)
O40.033 (2)0.049 (2)0.046 (2)0.0054 (16)0.0136 (17)0.0112 (18)
O50.069 (3)0.042 (2)0.039 (2)0.0211 (18)0.004 (2)0.0075 (18)
O80.042 (2)0.035 (2)0.051 (3)0.0033 (19)−0.0009 (19)0.0104 (19)
C10.029 (3)0.040 (3)0.033 (3)0.009 (2)−0.001 (2)0.012 (2)
C20.022 (3)0.032 (3)0.032 (3)0.008 (2)0.000 (2)0.008 (2)
C30.037 (3)0.047 (3)0.035 (3)0.010 (2)0.009 (2)0.004 (3)
C40.057 (4)0.041 (3)0.032 (3)0.006 (3)0.003 (3)0.000 (3)
C50.038 (3)0.037 (3)0.043 (4)−0.008 (2)−0.001 (3)0.005 (3)
C60.036 (3)0.031 (3)0.045 (4)0.002 (2)0.005 (3)0.010 (3)
C70.040 (3)0.049 (3)0.043 (4)0.007 (3)0.004 (3)0.019 (3)
C80.033 (3)0.044 (3)0.049 (4)0.010 (3)0.011 (3)0.015 (3)
C90.031 (3)0.032 (3)0.033 (3)0.005 (2)0.011 (2)0.010 (2)
C100.035 (3)0.054 (4)0.048 (4)0.011 (3)0.008 (3)0.023 (3)
C110.050 (4)0.053 (4)0.040 (4)0.010 (3)0.002 (3)0.009 (3)
C120.036 (3)0.049 (3)0.042 (4)0.007 (3)0.006 (3)−0.004 (3)
C130.032 (3)0.033 (3)0.045 (4)0.007 (2)0.013 (3)0.005 (3)
O20.027 (2)0.061 (2)0.044 (2)0.0007 (16)0.0073 (17)0.0029 (18)
O30.034 (2)0.063 (2)0.065 (3)−0.0095 (18)0.0098 (19)0.013 (2)
O60.071 (3)0.051 (2)0.065 (3)0.021 (2)0.007 (2)0.028 (2)
O70.054 (2)0.055 (2)0.026 (2)0.0208 (18)−0.0004 (18)0.0015 (17)
O90.060 (3)0.034 (2)0.079 (3)0.005 (2)0.027 (2)0.000 (2)

Geometric parameters (Å, °)

Fe1—O71.939 (3)C3—H30.9300
Fe1—O51.945 (4)C4—C51.360 (6)
Fe1—O81.986 (4)C4—H40.9300
Fe1—O42.023 (3)C5—C61.369 (6)
Fe1—O12.032 (3)C5—H50.9300
Fe1—N12.055 (4)C6—C71.511 (6)
N1—C61.321 (5)C7—O31.226 (5)
N1—C21.331 (5)C8—O61.226 (6)
N2—O71.332 (5)C8—C91.496 (6)
N2—C91.352 (5)C9—C101.382 (6)
N2—C131.362 (5)C10—C111.374 (6)
O1—C11.262 (5)C10—H100.9300
O4—C71.285 (5)C11—C121.344 (7)
O5—C81.279 (6)C11—H110.9300
O8—H8A0.85 (3)C12—C131.351 (7)
O8—H8B0.83 (3)C12—H120.9300
C1—O21.228 (5)C13—H130.9300
C1—C21.507 (6)O9—H9A0.87 (3)
C2—C31.365 (6)O9—H9B0.86 (3)
C3—C41.372 (6)
O7—Fe1—O586.72 (14)C2—C3—H3121.1
O7—Fe1—O882.18 (14)C4—C3—H3121.1
O5—Fe1—O8167.93 (15)C5—C4—C3120.6 (4)
O7—Fe1—O4110.22 (14)C5—C4—H4119.7
O5—Fe1—O491.59 (14)C3—C4—H4119.7
O8—Fe1—O487.85 (14)C4—C5—C6119.1 (4)
O7—Fe1—O198.80 (13)C4—C5—H5120.4
O5—Fe1—O193.23 (14)C6—C5—H5120.4
O8—Fe1—O193.13 (14)N1—C6—C5120.0 (4)
O4—Fe1—O1150.80 (13)N1—C6—C7111.0 (4)
O7—Fe1—N1172.69 (15)C5—C6—C7129.1 (4)
O5—Fe1—N197.84 (14)O3—C7—O4126.8 (5)
O8—Fe1—N193.69 (15)O3—C7—C6119.7 (5)
O4—Fe1—N175.50 (13)O4—C7—C6113.5 (4)
O1—Fe1—N175.31 (13)O6—C8—O5123.9 (5)
C6—N1—C2121.5 (4)O6—C8—C9116.3 (5)
C6—N1—Fe1119.4 (3)O5—C8—C9119.8 (5)
C2—N1—Fe1119.1 (3)N2—C9—C10117.5 (4)
O7—N2—C9124.5 (4)N2—C9—C8121.7 (5)
O7—N2—C13113.8 (4)C10—C9—C8120.8 (5)
C9—N2—C13121.6 (4)C11—C10—C9121.3 (5)
C1—O1—Fe1120.7 (3)C11—C10—H10119.4
C7—O4—Fe1120.6 (3)C9—C10—H10119.4
C8—O5—Fe1133.6 (3)C12—C11—C10118.8 (5)
Fe1—O8—H8A121 (3)C12—C11—H11120.6
Fe1—O8—H8B136 (4)C10—C11—H11120.6
H8A—O8—H8B101 (5)C11—C12—C13121.2 (5)
O2—C1—O1126.8 (4)C11—C12—H12119.4
O2—C1—C2118.9 (4)C13—C12—H12119.4
O1—C1—C2114.3 (4)C12—C13—N2119.5 (5)
N1—C2—C3121.0 (4)C12—C13—H13120.2
N1—C2—C1110.7 (4)N2—C13—H13120.2
C3—C2—C1128.3 (4)N2—O7—Fe1129.5 (3)
C2—C3—C4117.8 (4)H9A—O9—H9B101 (5)
O7—Fe1—N1—C6142.0 (11)C3—C4—C5—C60.3 (8)
O5—Fe1—N1—C6−89.7 (4)C2—N1—C6—C50.7 (8)
O8—Fe1—N1—C686.7 (4)Fe1—N1—C6—C5−179.4 (4)
O4—Fe1—N1—C6−0.1 (4)C2—N1—C6—C7−179.3 (4)
O1—Fe1—N1—C6179.0 (4)Fe1—N1—C6—C70.6 (5)
O7—Fe1—N1—C2−38.1 (14)C4—C5—C6—N1−1.0 (8)
O5—Fe1—N1—C290.2 (4)C4—C5—C6—C7179.0 (5)
O8—Fe1—N1—C2−93.4 (4)Fe1—O4—C7—O3179.8 (4)
O4—Fe1—N1—C2179.8 (4)Fe1—O4—C7—C61.0 (6)
O1—Fe1—N1—C2−1.1 (3)N1—C6—C7—O3−179.9 (5)
O7—Fe1—O1—C1176.8 (4)C5—C6—C7—O30.1 (9)
O5—Fe1—O1—C1−96.0 (4)N1—C6—C7—O4−1.0 (6)
O8—Fe1—O1—C194.3 (4)C5—C6—C7—O4179.0 (5)
O4—Fe1—O1—C13.1 (5)Fe1—O5—C8—O6−165.3 (3)
N1—Fe1—O1—C11.3 (4)Fe1—O5—C8—C917.2 (7)
O7—Fe1—O4—C7−175.7 (4)O7—N2—C9—C10174.6 (4)
O5—Fe1—O4—C797.2 (4)C13—N2—C9—C10−2.3 (6)
O8—Fe1—O4—C7−94.9 (4)O7—N2—C9—C8−5.9 (7)
O1—Fe1—O4—C7−2.3 (5)C13—N2—C9—C8177.2 (4)
N1—Fe1—O4—C7−0.5 (4)O6—C8—C9—N2169.3 (4)
O7—Fe1—O5—C8−4.4 (5)O5—C8—C9—N2−13.0 (7)
O8—Fe1—O5—C818.6 (10)O6—C8—C9—C10−11.3 (7)
O4—Fe1—O5—C8105.7 (5)O5—C8—C9—C10166.5 (5)
O1—Fe1—O5—C8−103.1 (5)N2—C9—C10—C110.6 (7)
N1—Fe1—O5—C8−178.7 (5)C8—C9—C10—C11−178.9 (4)
Fe1—O1—C1—O2179.0 (4)C9—C10—C11—C120.8 (8)
Fe1—O1—C1—C2−1.2 (5)C10—C11—C12—C13−0.5 (8)
C6—N1—C2—C30.4 (7)C11—C12—C13—N2−1.2 (8)
Fe1—N1—C2—C3−179.5 (3)O7—N2—C13—C12−174.5 (4)
C6—N1—C2—C1−179.2 (4)C9—N2—C13—C122.7 (7)
Fe1—N1—C2—C10.8 (5)C9—N2—O7—Fe122.0 (6)
O2—C1—C2—N1−180.0 (4)C13—N2—O7—Fe1−160.9 (3)
O1—C1—C2—N10.2 (6)O5—Fe1—O7—N2−15.4 (4)
O2—C1—C2—C30.4 (8)O8—Fe1—O7—N2169.3 (4)
O1—C1—C2—C3−179.4 (5)O4—Fe1—O7—N2−105.9 (4)
N1—C2—C3—C4−1.1 (7)O1—Fe1—O7—N277.3 (4)
C1—C2—C3—C4178.5 (5)N1—Fe1—O7—N2113.4 (12)
C2—C3—C4—C50.7 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O8—H8A···O2i0.85 (4)1.81 (4)2.637 (5)164 (4)
O8—H8B···O9ii0.83 (3)1.79 (4)2.571 (5)157 (5)
O9—H9A···O3iii0.87 (5)1.88 (5)2.730 (5)167 (5)
O9—H9B···O50.86 (5)1.97 (6)2.821 (5)173 (4)

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2445).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lainé, P., Gourdon, A. & Launay, J. P. (1995). Inorg. Chem.34, 5129–5137.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, W. P., Wang, Y. Y., Wu, Y. P., Liu, J. Q., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2007). CrystEngComm, 9, 753–757.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography