PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1947–o1948.
Published online 2008 September 17. doi:  10.1107/S1600536808029115
PMCID: PMC2959445

4,4′-Methyl­enedianilinium bis­(3-carb­oxy-4-hydroxy­benzene­sulfonate) monohydrate

Abstract

Co-crystallization of 4,4′-methyl­enediphenyl­amine (MDA) and 5-sulfosalicylic acid (5-H2SSA) yields the title salt, C13H16N2 2+·2C7H5O6S·H2O. The asymmetric unit is comprised of one dication, two anions and one water mol­ecule. In the crystal structure, the components of the salt are linked by a combination of inter­molecular O—H(...)O, N—H(...)O and weak C—H(...)O hydrogen bonds into a three-dimensional framework. In addition, two weak π–π inter­actions [with centroid–centroid distances of 3.8734 (15) and 3.7465 (15) Å] and one C—H(...)π inter­action further stabilize the crystal structure.

Related literature

For related structures, see: Smith (2005 [triangle]); Smith et al. (2005a [triangle],b [triangle], 2006 [triangle]). For background information, see: Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1947-scheme1.jpg

Experimental

Crystal data

  • C13H16N2 2+·2C7H5O6S·H2O
  • M r = 652.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1947-efi1.jpg
  • a = 5.8769 (1) Å
  • b = 18.8659 (3) Å
  • c = 12.9864 (2) Å
  • β = 94.668 (1)°
  • V = 1435.06 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 (2) K
  • 0.40 × 0.30 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.894, T max = 0.990
  • 16262 measured reflections
  • 6379 independent reflections
  • 5671 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 1.09
  • 6379 reflections
  • 433 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3009 Friedel pairs
  • Flack parameter: 0.05 (6)

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029115/lh2691sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029115/lh2691Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant Nos. 10574047, 10574048 and 20490210. This work was also supported by the National 973 Project under grant No. 2006CB921605.

supplementary crystallographic information

Comment

In a continuation of our studies on the molecular and supra-molecular structures in organic salts formed by 5-sulfosaliyclic acid (5-H2SSA) and N-containing lewis bases (Wang et al., 2008), we now report our findings on the title compound (Scheme I).

Two 5-HSSA- anions, one 4,4'-methylenediphenylammonium dication (MDA2+) and one water molecules comprise the asymmetric unit of (I) (Fig. 1). As in similar analogous organic adducts which have been previuosly reported (Smith et al., 2005a,b; Smith, 2005; Smith et al., 2006), both the sulfonic H atoms are transferred to the amine N atom, yielding the title organic salt. However, the conformations of the sulfonate groups are different in the two anions. The perpendicular distances of the sulfonate O4, O5 and O6 atoms to their adjacent benzene plane are 0.585 (1), 1.263 (1) and 0.967 (1) Å, respectively. The corresponding distances are 1.456 (1), 0.844 (1) and 0.312 (1)Å for O10, O11 and O12 atoms, respectively.

In the crystal structure, the component ions are linked by a combination of O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig.2). An analysis using PLATON (Spek, 2003) showed that two π-π [Cg1···Cg3 = 3.8734 (15) and dperpendicular = 3.522 (2) Å, symmetry code: 1 + x, y, z; Cg2···Cg3 = 3.7465 (15) and dperpendicular = 3.526 (2), symmetry code: 1 - x,1/2 + y,1 - z, where Cg1, Cg2 and Cg3 are the centroids of the C1—C6, C8—C13 and C21—C26 benzene rings, respectively] and one C—H···π [dH16—Cg2= 2.85 Å, dC16—Cg2= 3.727 (3) Å, AC16—H16···Cg2=157°, symmetry code: 1 - x,1/2 + y,2 - z] interactions exist, which further consolidate the crystal structure.

Experimental

All reagents and solvents were used as obtained without further purification. Equivalent molar amount of 4,4'-methylenediphenylamine and 5-sulfosalicylic acid dihydrate were dissolved in 95% methanol (20 ml). The mixture was stirred for 30 minutes at 300 K and then filtered. Colorless plate crystals of (I) suitable for single-crystal X-ray diffraction analysis grew at the bottom of the vessel in two weeks after slow evaporation of the solution.

Refinement

The title compound is racemic in solution but spontaneously resolved upon crystallization. The absolute configuration of the molecules in the crystal selected was readily determined and the configuration has no chemical significance.

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and refined in a riding mode [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to N and O atoms were found in difference maps and the N—H and O—H distances were refined freely [the refined distances are given in Table 1; Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), respectively].

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-bonds are shown as dashed lines.
Fig. 2.
Part of the crystal structure of (I), showing the formation of the three-dimensional framework structure. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.

Crystal data

C13H16N22+·2C7H5O6S·H2OF(000) = 680
Mr = 652.63Dx = 1.510 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7439 reflections
a = 5.8769 (1) Åθ = 2.7–27.0°
b = 18.8659 (3) ŵ = 0.26 mm1
c = 12.9864 (2) ÅT = 296 K
β = 94.668 (1)°Plate, colorless
V = 1435.06 (4) Å30.40 × 0.30 × 0.04 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer6379 independent reflections
Radiation source: fine focus sealed Siemens Mo tube5671 reflections with I > 2σ(I)
graphiteRint = 0.023
0.3° wide ω exposures scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.894, Tmax = 0.990k = −24→24
16262 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106w = 1/[σ2(Fo2) + (0.0586P)2 + 0.1606P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
6379 reflectionsΔρmax = 0.33 e Å3
433 parametersΔρmin = −0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 3009 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9685 (4)0.25024 (11)0.7833 (2)0.0379 (5)
C21.1742 (5)0.28453 (14)0.8000 (2)0.0466 (6)
H21.28390.26840.85020.056*
C31.2157 (5)0.34335 (14)0.7412 (3)0.0490 (7)
H31.35490.36670.75210.059*
C41.0543 (5)0.36826 (13)0.6662 (2)0.0430 (6)
C50.8515 (5)0.33235 (15)0.6504 (2)0.0491 (7)
H50.74270.34770.59930.059*
C60.8060 (5)0.27345 (14)0.7097 (2)0.0477 (6)
H60.66670.25010.69930.057*
C71.0939 (6)0.43468 (15)0.6053 (2)0.0537 (7)
H7A1.01420.43090.53710.064*
H7B1.25560.43970.59690.064*
C81.0094 (5)0.49994 (13)0.6599 (2)0.0419 (6)
C91.1433 (5)0.53092 (14)0.7404 (2)0.0464 (6)
H91.28750.51250.75940.056*
C101.0668 (5)0.58854 (14)0.7929 (2)0.0451 (6)
H101.15970.60960.84560.054*
C110.8526 (4)0.61432 (12)0.7664 (2)0.0398 (5)
C120.7149 (4)0.58484 (15)0.6869 (2)0.0442 (6)
H120.57020.60310.66890.053*
C130.7954 (5)0.52752 (15)0.6342 (2)0.0486 (6)
H130.70320.50730.58050.058*
N10.9214 (5)0.18836 (12)0.8458 (2)0.0443 (5)
H1B0.804 (6)0.1679 (19)0.824 (3)0.053*
H1A0.928 (5)0.1973 (18)0.914 (3)0.053*
H1C1.040 (6)0.1513 (18)0.845 (3)0.053*
N20.7665 (5)0.67217 (14)0.8262 (2)0.0515 (6)
H2A0.861 (6)0.703 (2)0.841 (3)0.062*
H2B0.665 (6)0.696 (2)0.793 (3)0.062*
H2C0.692 (6)0.6611 (19)0.888 (3)0.062*
C140.5812 (4)0.96279 (12)0.95964 (18)0.0340 (5)
C150.4353 (4)0.99410 (13)1.02603 (19)0.0365 (5)
C160.2674 (5)0.95376 (14)1.0667 (2)0.0445 (6)
H160.17550.97391.11380.053*
C170.2356 (5)0.88431 (13)1.0379 (2)0.0407 (6)
H170.11990.85791.06430.049*
C180.3759 (4)0.85330 (11)0.96958 (19)0.0347 (5)
C190.5485 (4)0.89143 (12)0.93132 (19)0.0351 (5)
H190.64390.87010.88670.042*
C200.7674 (4)1.00540 (13)0.91927 (19)0.0379 (5)
O10.7991 (3)1.06703 (9)0.94503 (16)0.0494 (5)
O20.8919 (4)0.97200 (11)0.85615 (17)0.0505 (5)
H2D0.967 (7)1.001 (2)0.831 (3)0.076*
O30.4490 (4)1.06391 (9)1.05113 (16)0.0493 (5)
H3A0.565 (7)1.079 (2)1.021 (3)0.074*
O40.0960 (4)0.74792 (10)0.94941 (17)0.0548 (5)
O50.4898 (4)0.72016 (10)0.99028 (16)0.0533 (5)
O60.3678 (3)0.76210 (11)0.82021 (14)0.0492 (4)
S10.32980 (11)0.76440 (3)0.92902 (5)0.03782 (15)
C210.0913 (5)0.20452 (12)0.48434 (19)0.0384 (5)
C22−0.1231 (5)0.17470 (14)0.4583 (2)0.0420 (6)
C23−0.1983 (4)0.11873 (15)0.5176 (2)0.0440 (6)
H23−0.34420.10040.50280.053*
C24−0.0591 (4)0.09056 (13)0.5976 (2)0.0400 (5)
H24−0.10940.05270.63550.048*
C250.1583 (4)0.11918 (13)0.62162 (18)0.0368 (5)
C260.2297 (4)0.17632 (13)0.56590 (19)0.0373 (5)
H260.37260.19620.58330.045*
C270.1761 (5)0.26283 (15)0.4210 (2)0.0466 (6)
O70.0906 (5)0.27667 (13)0.33542 (18)0.0716 (7)
O80.3540 (4)0.29627 (12)0.46501 (18)0.0578 (6)
H8A0.407 (7)0.328 (3)0.424 (3)0.087*
O9−0.2667 (4)0.19688 (13)0.37804 (16)0.0554 (5)
H9A−0.206 (7)0.231 (2)0.348 (3)0.083*
O100.4348 (4)0.01754 (12)0.6798 (2)0.0732 (7)
O110.2003 (3)0.06836 (11)0.80492 (16)0.0520 (5)
O120.5149 (4)0.13324 (13)0.74758 (17)0.0589 (5)
S20.34239 (10)0.08090 (3)0.72033 (5)0.03813 (15)
O130.4004 (7)0.87302 (16)0.6497 (3)0.0986 (11)
H13A0.404 (11)0.917 (4)0.657 (5)0.148*
H13B0.314 (12)0.857 (4)0.698 (5)0.148*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0465 (14)0.0255 (11)0.0430 (13)0.0029 (9)0.0114 (11)0.0018 (9)
C20.0433 (15)0.0386 (13)0.0572 (17)0.0012 (11)−0.0001 (12)−0.0006 (12)
C30.0386 (14)0.0371 (13)0.072 (2)−0.0061 (11)0.0098 (13)0.0020 (13)
C40.0540 (16)0.0288 (11)0.0487 (15)0.0009 (11)0.0189 (13)−0.0001 (10)
C50.0567 (17)0.0378 (13)0.0515 (17)−0.0028 (12)−0.0034 (13)0.0017 (12)
C60.0461 (15)0.0360 (13)0.0604 (17)−0.0075 (11)0.0012 (12)−0.0022 (12)
C70.074 (2)0.0380 (14)0.0532 (17)−0.0042 (13)0.0280 (16)0.0007 (12)
C80.0533 (16)0.0303 (11)0.0443 (14)−0.0045 (11)0.0166 (12)0.0069 (10)
C90.0385 (14)0.0394 (14)0.0615 (17)0.0006 (11)0.0053 (12)0.0073 (12)
C100.0426 (13)0.0405 (13)0.0516 (15)−0.0040 (11)−0.0003 (11)−0.0008 (12)
C110.0439 (14)0.0317 (11)0.0450 (14)−0.0026 (10)0.0110 (11)0.0057 (10)
C120.0395 (13)0.0438 (13)0.0489 (15)−0.0009 (12)0.0006 (11)0.0020 (13)
C130.0526 (16)0.0453 (14)0.0476 (16)−0.0092 (12)0.0011 (12)−0.0004 (12)
N10.0522 (14)0.0327 (11)0.0493 (14)−0.0007 (10)0.0109 (11)0.0053 (10)
N20.0526 (16)0.0430 (13)0.0598 (17)−0.0009 (11)0.0102 (13)−0.0071 (11)
C140.0373 (12)0.0294 (10)0.0354 (12)−0.0008 (9)0.0033 (10)0.0028 (9)
C150.0399 (13)0.0297 (10)0.0399 (13)−0.0018 (9)0.0024 (10)−0.0014 (10)
C160.0502 (15)0.0355 (12)0.0506 (16)0.0006 (11)0.0204 (12)−0.0063 (11)
C170.0437 (14)0.0350 (12)0.0452 (14)−0.0063 (10)0.0155 (11)−0.0015 (11)
C180.0416 (14)0.0255 (10)0.0373 (13)−0.0028 (9)0.0050 (10)−0.0019 (9)
C190.0395 (13)0.0295 (10)0.0369 (13)−0.0001 (9)0.0076 (10)−0.0003 (9)
C200.0408 (13)0.0352 (12)0.0378 (13)−0.0018 (10)0.0042 (10)0.0072 (10)
O10.0584 (11)0.0307 (9)0.0610 (12)−0.0109 (8)0.0165 (9)0.0016 (8)
O20.0503 (12)0.0434 (10)0.0609 (12)−0.0058 (8)0.0237 (9)0.0028 (9)
O30.0632 (12)0.0300 (9)0.0572 (12)−0.0089 (8)0.0202 (10)−0.0088 (8)
O40.0591 (12)0.0426 (11)0.0648 (13)−0.0178 (9)0.0169 (10)−0.0127 (9)
O50.0722 (14)0.0328 (9)0.0542 (12)0.0043 (9)0.0013 (10)0.0003 (8)
O60.0616 (12)0.0444 (9)0.0418 (10)−0.0044 (9)0.0053 (8)−0.0081 (9)
S10.0465 (3)0.0268 (2)0.0410 (3)−0.0056 (2)0.0090 (2)−0.0048 (2)
C210.0487 (14)0.0309 (11)0.0366 (12)0.0026 (10)0.0093 (11)−0.0031 (10)
C220.0445 (14)0.0435 (13)0.0382 (13)0.0094 (11)0.0041 (11)−0.0046 (11)
C230.0355 (13)0.0548 (15)0.0425 (14)−0.0062 (11)0.0078 (11)−0.0064 (12)
C240.0403 (13)0.0396 (12)0.0415 (13)−0.0027 (11)0.0108 (10)0.0017 (11)
C250.0403 (13)0.0353 (12)0.0352 (13)0.0007 (10)0.0063 (10)−0.0040 (10)
C260.0375 (12)0.0355 (11)0.0398 (13)−0.0009 (10)0.0077 (10)−0.0025 (10)
C270.0587 (16)0.0359 (12)0.0461 (15)0.0022 (13)0.0098 (12)0.0003 (13)
O70.0983 (19)0.0600 (15)0.0541 (14)−0.0140 (12)−0.0090 (13)0.0217 (11)
O80.0705 (14)0.0522 (12)0.0510 (13)−0.0155 (10)0.0072 (11)0.0091 (10)
O90.0532 (12)0.0598 (13)0.0519 (12)0.0058 (10)−0.0041 (9)0.0067 (10)
O100.0848 (17)0.0520 (12)0.0842 (17)0.0241 (12)0.0150 (14)0.0013 (12)
O110.0452 (10)0.0580 (12)0.0537 (11)−0.0025 (9)0.0091 (8)0.0180 (9)
O120.0511 (12)0.0624 (13)0.0609 (13)−0.0159 (10)−0.0087 (10)0.0176 (10)
S20.0342 (3)0.0355 (3)0.0456 (3)0.0013 (2)0.0084 (2)0.0066 (3)
O130.136 (3)0.0565 (15)0.112 (3)0.0003 (17)0.058 (2)−0.0240 (16)

Geometric parameters (Å, °)

C1—C61.368 (4)C16—C171.371 (3)
C1—C21.373 (4)C16—H160.9300
C1—N11.461 (3)C17—C181.389 (3)
C2—C31.381 (4)C17—H170.9300
C2—H20.9300C18—C191.370 (3)
C3—C41.384 (4)C18—S11.772 (2)
C3—H30.9300C19—H190.9300
C4—C51.372 (4)C20—O11.220 (3)
C4—C71.510 (4)C20—O21.305 (3)
C5—C61.390 (4)O2—H2D0.80 (4)
C5—H50.9300O3—H3A0.86 (4)
C6—H60.9300O4—S11.454 (2)
C7—C81.524 (4)O5—S11.446 (2)
C7—H7A0.9700O6—S11.4490 (19)
C7—H7B0.9700O6—O133.064 (4)
C8—C131.377 (4)C21—C261.388 (4)
C8—C91.386 (4)C21—C221.396 (4)
C9—C101.378 (4)C21—C271.484 (4)
C9—H90.9300C22—O91.353 (3)
C10—C111.367 (4)C22—C231.400 (4)
C10—H100.9300C23—C241.375 (4)
C11—C121.376 (4)C23—H230.9300
C11—N21.454 (3)C24—C251.399 (4)
C12—C131.384 (4)C24—H240.9300
C12—H120.9300C25—C261.382 (3)
C13—H130.9300C25—S21.763 (3)
N1—H1B0.82 (4)C26—H260.9300
N1—H1A0.90 (4)C27—O71.211 (4)
N1—H1C0.99 (4)C27—O81.311 (4)
N2—H2A0.82 (4)O8—H8A0.87 (5)
N2—H2B0.84 (4)O9—H9A0.86 (5)
N2—H2C0.97 (4)O10—S21.431 (2)
C14—C151.396 (3)O11—S21.4526 (19)
C14—C191.405 (3)O12—S21.439 (2)
C14—C201.487 (3)O13—H13A0.83 (8)
C15—O31.357 (3)O13—H13B0.89 (7)
C15—C161.384 (4)
C6—C1—C2121.0 (2)C16—C15—C14119.7 (2)
C6—C1—N1119.4 (2)C17—C16—C15120.5 (2)
C2—C1—N1119.5 (2)C17—C16—H16119.8
C1—C2—C3119.0 (3)C15—C16—H16119.8
C1—C2—H2120.5C16—C17—C18120.1 (2)
C3—C2—H2120.5C16—C17—H17119.9
C2—C3—C4121.4 (3)C18—C17—H17119.9
C2—C3—H3119.3C19—C18—C17120.4 (2)
C4—C3—H3119.3C19—C18—S1119.29 (18)
C5—C4—C3118.3 (2)C17—C18—S1120.28 (18)
C5—C4—C7120.0 (3)C18—C19—C14119.9 (2)
C3—C4—C7121.6 (3)C18—C19—H19120.1
C4—C5—C6121.1 (3)C14—C19—H19120.1
C4—C5—H5119.5O1—C20—O2123.5 (2)
C6—C5—H5119.5O1—C20—C14121.3 (2)
C1—C6—C5119.2 (3)O2—C20—C14115.3 (2)
C1—C6—H6120.4C20—O2—H2D106 (3)
C5—C6—H6120.4C15—O3—H3A104 (3)
C4—C7—C8110.9 (2)S1—O6—H2B111.3 (10)
C4—C7—H7A109.5S1—O6—O13135.06 (12)
C8—C7—H7A109.5H2B—O6—O1399.8 (10)
C4—C7—H7B109.5O5—S1—O6111.97 (12)
C8—C7—H7B109.5O5—S1—O4110.99 (13)
H7A—C7—H7B108.1O6—S1—O4113.21 (12)
C13—C8—C9118.4 (2)O5—S1—C18107.80 (12)
C13—C8—C7121.2 (3)O6—S1—C18106.63 (12)
C9—C8—C7120.4 (3)O4—S1—C18105.80 (11)
C10—C9—C8121.2 (3)C26—C21—C22119.5 (2)
C10—C9—H9119.4C26—C21—C27120.3 (2)
C8—C9—H9119.4C22—C21—C27120.1 (2)
C11—C10—C9119.2 (3)O9—C22—C21123.8 (2)
C11—C10—H10120.4O9—C22—C23116.9 (2)
C9—C10—H10120.4C21—C22—C23119.3 (2)
C10—C11—C12121.2 (2)C24—C23—C22120.8 (2)
C10—C11—N2119.1 (3)C24—C23—H23119.6
C12—C11—N2119.7 (2)C22—C23—H23119.6
C11—C12—C13118.9 (2)C23—C24—C25119.7 (2)
C11—C12—H12120.6C23—C24—H24120.1
C13—C12—H12120.6C25—C24—H24120.1
C8—C13—C12121.2 (3)C26—C25—C24119.7 (2)
C8—C13—H13119.4C26—C25—S2120.4 (2)
C12—C13—H13119.4C24—C25—S2119.95 (19)
C1—N1—H1B112 (2)C25—C26—C21120.9 (2)
C1—N1—H1A114 (2)C25—C26—H26119.5
H1B—N1—H1A114 (3)C21—C26—H26119.5
C1—N1—H1C113.3 (19)O7—C27—O8123.6 (3)
H1B—N1—H1C103 (3)O7—C27—C21122.4 (3)
H1A—N1—H1C100 (3)O8—C27—C21114.0 (2)
C11—N2—H2A114 (3)C27—O8—H8A112 (3)
C11—N2—H2B113 (2)C22—O9—H9A109 (3)
H2A—N2—H2B100 (4)O10—S2—O12112.51 (15)
C11—N2—H2C119 (2)O10—S2—O11113.65 (14)
H2A—N2—H2C107 (3)O12—S2—O11111.27 (13)
H2B—N2—H2C102 (3)O10—S2—C25107.66 (14)
C15—C14—C19119.3 (2)O12—S2—C25106.02 (12)
C15—C14—C20119.7 (2)O11—S2—C25105.07 (11)
C19—C14—C20121.0 (2)O6—O13—H13A127 (5)
O3—C15—C16118.2 (2)H13A—O13—H13B106 (6)
O3—C15—C14122.1 (2)
C6—C1—C2—C30.1 (4)C19—C14—C20—O1−178.7 (3)
N1—C1—C2—C3−179.4 (3)C15—C14—C20—O2−178.7 (2)
C1—C2—C3—C40.1 (4)C19—C14—C20—O20.8 (4)
C2—C3—C4—C5−0.9 (4)H2B—O6—S1—O5−2.9 (10)
C2—C3—C4—C7176.9 (3)O13—O6—S1—O5−133.47 (18)
C3—C4—C5—C61.5 (4)H2B—O6—S1—O4−129.3 (10)
C7—C4—C5—C6−176.3 (3)O13—O6—S1—O4100.15 (19)
C2—C1—C6—C50.5 (4)H2B—O6—S1—C18114.8 (10)
N1—C1—C6—C5180.0 (3)O13—O6—S1—C18−15.8 (2)
C4—C5—C6—C1−1.4 (4)C19—C18—S1—O582.1 (2)
C5—C4—C7—C888.5 (3)C17—C18—S1—O5−99.1 (2)
C3—C4—C7—C8−89.3 (3)C19—C18—S1—O6−38.3 (2)
C4—C7—C8—C13−95.7 (3)C17—C18—S1—O6140.5 (2)
C4—C7—C8—C981.2 (3)C19—C18—S1—O4−159.1 (2)
C13—C8—C9—C10−0.9 (4)C17—C18—S1—O419.7 (3)
C7—C8—C9—C10−177.9 (2)C26—C21—C22—O9−177.7 (2)
C8—C9—C10—C111.6 (4)C27—C21—C22—O9−1.6 (4)
C9—C10—C11—C12−1.6 (4)C26—C21—C22—C232.6 (4)
C9—C10—C11—N2176.1 (2)C27—C21—C22—C23178.7 (2)
C10—C11—C12—C130.8 (4)O9—C22—C23—C24176.9 (2)
N2—C11—C12—C13−176.8 (3)C21—C22—C23—C24−3.4 (4)
C9—C8—C13—C120.1 (4)C22—C23—C24—C251.5 (4)
C7—C8—C13—C12177.1 (2)C23—C24—C25—C261.1 (4)
C11—C12—C13—C8−0.1 (4)C23—C24—C25—S2−177.24 (19)
C19—C14—C15—O3−175.8 (2)C24—C25—C26—C21−1.9 (4)
C20—C14—C15—O33.7 (4)S2—C25—C26—C21176.48 (18)
C19—C14—C15—C162.9 (4)C22—C21—C26—C250.0 (4)
C20—C14—C15—C16−177.6 (2)C27—C21—C26—C25−176.1 (2)
O3—C15—C16—C17175.3 (3)C26—C21—C27—O7160.4 (3)
C14—C15—C16—C17−3.5 (4)C22—C21—C27—O7−15.6 (4)
C15—C16—C17—C181.6 (4)C26—C21—C27—O8−17.9 (3)
C16—C17—C18—C190.8 (4)C22—C21—C27—O8166.1 (2)
C16—C17—C18—S1−178.0 (2)C26—C25—S2—O10−101.6 (2)
C17—C18—C19—C14−1.3 (4)C24—C25—S2—O1076.8 (2)
S1—C18—C19—C14177.48 (19)C26—C25—S2—O1219.1 (2)
C15—C14—C19—C18−0.5 (4)C24—C25—S2—O12−162.6 (2)
C20—C14—C19—C18180.0 (2)C26—C25—S2—O11137.0 (2)
C15—C14—C20—O11.8 (4)C24—C25—S2—O11−44.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90 (4)2.03 (4)2.896 (4)161 (3)
N1—H1B···O1ii0.82 (4)2.47 (3)2.751 (3)101 (3)
N1—H1B···O120.82 (4)2.01 (4)2.814 (4)168 (3)
N1—H1C···O11iii0.99 (4)1.92 (4)2.870 (3)161 (3)
N2—H2A···O4iii0.82 (4)2.07 (4)2.801 (4)149 (3)
N2—H2C···O50.97 (4)2.16 (4)2.927 (4)135 (3)
N2—H2B···O60.84 (4)2.20 (4)2.889 (4)139 (3)
N2—H2C···O3i0.97 (4)2.19 (4)2.940 (3)134 (3)
O2—H2D···O11iv0.80 (4)1.91 (4)2.688 (3)164 (4)
O3—H3A···O10.86 (4)1.77 (4)2.569 (3)153 (4)
O8—H8A···O13v0.87 (5)1.76 (5)2.598 (4)160 (4)
O9—H9A···O70.86 (5)1.96 (4)2.678 (3)141 (4)
O9—H9A···O6vi0.86 (5)2.38 (4)2.872 (3)117 (3)
O13—H13A···O10vii0.83 (8)1.93 (8)2.759 (4)176 (7)
O13—H13B···O60.89 (7)2.39 (7)3.064 (4)132 (6)
C2—H2···O5viii0.932.543.452 (4)168.
C6—H6···O120.932.483.210 (3)136.
C12—H12···O9ix0.932.553.428 (4)158.
C16—H16···Cgx0.932.853.727 (3)157

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) x, y−1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) −x+1, y−1/2, −z+1; (vi) −x, y−1/2, −z+1; (vii) x, y+1, z; (viii) −x+2, y−1/2, −z+2; (ix) −x, y+1/2, −z+1; (x) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2691).

References

  • Bruker (2007). SAINT-Plus and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. (2005). Acta Cryst. E61, o3398–o3400.
  • Smith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. E61, o313–o316.
  • Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105–o109. [PubMed]
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313–o2315.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, Z., Yao, K., Liu, Z. & Xu, H. (2008). Acta Cryst. E64, o1192. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography