PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2034–o2035.
Published online 2008 September 30. doi:  10.1107/S1600536808031048
PMCID: PMC2959442

N-(4-Chloro-2-nitro­phen­yl)methane­sulfonamide

Abstract

The title compound, C7H7ClN2O4S, is of inter­est as a precursor to biologically active substituted quinolines. Its structure resembles those of the previously reported N-phenyl­methane sulfonamide and its 4-nitro, 4-fluoro and 4-bromo derivatives, with slightly different geometric parameters. An intra­molecular N—H(...)O hydrogen bond gives rise to a six-membered ring. Inter­molecular C—H(...)O contacts stabilize the crystal packing.

Related literature

For related literature, see: Ahn et al. (1997 [triangle]); Allen et al. (1987 [triangle]); Ozbek et al. (2007 [triangle]); Siddiqui et al. (2007 [triangle]); Gennarti et al. (1994 [triangle]); Gowda et al. (2007a [triangle],b [triangle],c [triangle]); Hanson et al. (1999 [triangle]); Moree et al. (1991 [triangle]); Oppolzer et al. (1991 [triangle]); Rough et al. (1998 [triangle]); Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle], 2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2034-scheme1.jpg

Experimental

Crystal data

  • C7H7ClN2O4S
  • M r = 250.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2034-efi1.jpg
  • a = 11.728 (3) Å
  • b = 4.9798 (13) Å
  • c = 17.988 (5) Å
  • β = 107.334 (8)°
  • V = 1002.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 296 (2) K
  • 0.22 × 0.14 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 10700 measured reflections
  • 2590 independent reflections
  • 1199 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.147
  • S = 0.97
  • 2556 reflections
  • 140 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031048/bt2794sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031048/bt2794Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the PCSIR Laboratories Complex, Lahore, Pakistan, for provision of the necessary chemicals, and to the Higher Education Commission of Pakistan for the grant to purchase the diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are familiar for their enormous potential as biologically active molecules (Hanson et al., 1999; Moree et al., 1991; Rough et al., 1998). They are being used as anti-microbial (Ozbek et al., 2007), anti-convulsant (Siddiqui et al., 2007), and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti et al., 1994). Besides, these are known as compounds being used as agricultural agents and chiral auxiliaries (Ahn et al., 1997; Oppolzer et al., 1991). Among these, alkyl sulfonanilides are of special interest due to their stereochemistry with amide hydrogen on one side of the plane of benzene ring making it a good receptor site for biological reactions. In the present paper, the structure of N-(4-chloro-2-nitrophenyl)methanesulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2007, 2008). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within normal ranges (Allen et al., 1987). Intramolecular interaction [N1—H1···O3] is observed in the title molecule giving rise to six-membered hydrogen bonded ring. Each molecule is centrosymmetrically linked to its adjacent one through intermolecular [N1—H1···O1] hydrogen bonds on one side, and via [C5—H5···O2] hydrogen bonds on the other side, giving rise to a zigzag chain along a axis. Each molecule of a chain is further linked to the member of adjacent chain via [C3—H3···O3] hydrogen bonds along c giving rise to a three dimensional network.

Experimental

A mixture of 4-chloro-2-nitroaniline (3.452 g; 20.0 mmoles) and mesyl chloride (2.52 g; 22.0 mmoles) and toluene (25.0 ml) was heated to reflux for half an hour. Solvent was then distilled off under reduced pressure and the resultant solids were washed with cold methanol. Crystals suitable for analysis were obtained by slow evaporation of methanolic solution over a period of two days.

Refinement

H atoms bound to C were placed in calculated positions (C—H distance = 0.95 Å) using a riding model. H atoms on N and O were freely refined.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Perspective view of the crystal packing showing hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C7H7ClN2O4SF(000) = 512
Mr = 250.67Dx = 1.660 Mg m3
Monoclinic, P21/nMelting point: 388 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.728 (3) ÅCell parameters from 1283 reflections
b = 4.9798 (13) Åθ = 2.4–20.9°
c = 17.988 (5) ŵ = 0.58 mm1
β = 107.334 (8)°T = 296 K
V = 1002.8 (5) Å3Needle, light yellow
Z = 40.22 × 0.14 × 0.07 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1199 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
graphiteθmax = 28.7°, θmin = 1.9°
Detector resolution: 7.5 pixels mm-1h = −15→15
[var phi] and ω scansk = −6→6
10700 measured reflectionsl = −23→24
2590 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.97w = 1/[σ2(Fo2) + (0.0627P)2] where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.36565 (9)−0.3010 (2)0.78879 (7)0.0757 (4)
S10.82089 (9)0.53780 (17)1.02558 (6)0.0499 (3)
O10.9148 (3)0.7102 (5)1.01960 (19)0.0756 (9)
O20.7141 (2)0.6562 (5)1.03188 (16)0.0647 (8)
O30.8855 (2)0.1004 (5)0.85222 (14)0.0554 (7)
O40.8088 (2)−0.2740 (5)0.80406 (15)0.0613 (7)
H10.852 (3)0.324 (7)0.938 (2)0.047 (11)*
N10.7906 (3)0.3571 (6)0.94717 (19)0.0509 (8)
N20.8034 (3)−0.0641 (6)0.83722 (16)0.0441 (7)
C10.6920 (3)0.1941 (6)0.91264 (19)0.0416 (8)
C20.6953 (3)−0.0052 (6)0.85865 (19)0.0397 (8)
C30.5963 (3)−0.1573 (7)0.8216 (2)0.0473 (9)
H30.6013−0.28840.78590.057*
C40.4913 (3)−0.1147 (7)0.8376 (2)0.0507 (9)
C50.4847 (3)0.0733 (7)0.8916 (2)0.0559 (10)
H50.41360.09740.90370.067*
C60.5830 (4)0.2266 (7)0.9282 (2)0.0556 (10)
H60.57670.35540.96420.067*
C70.8741 (4)0.3148 (8)1.1025 (3)0.0756 (13)
H80.94130.21831.09590.113*
H90.81210.19031.10360.113*
H70.89840.41271.15070.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0495 (6)0.0871 (8)0.0875 (9)−0.0078 (5)0.0156 (6)−0.0033 (6)
S10.0594 (6)0.0414 (5)0.0527 (6)0.0081 (4)0.0224 (5)−0.0082 (4)
O10.083 (2)0.0540 (15)0.100 (2)−0.0184 (14)0.0431 (19)−0.0276 (15)
O20.0700 (18)0.0622 (16)0.0661 (19)0.0267 (13)0.0267 (14)−0.0096 (13)
O30.0468 (15)0.0678 (16)0.0571 (18)−0.0027 (13)0.0238 (13)−0.0109 (13)
O40.0608 (17)0.0650 (16)0.0627 (19)0.0092 (12)0.0255 (14)−0.0258 (13)
N10.050 (2)0.0539 (18)0.058 (2)0.0022 (16)0.0296 (17)−0.0131 (14)
N20.0457 (18)0.0526 (17)0.0364 (17)0.0107 (15)0.0157 (13)−0.0016 (13)
C10.048 (2)0.0412 (18)0.040 (2)0.0068 (16)0.0205 (17)0.0032 (15)
C20.042 (2)0.0445 (18)0.0361 (19)0.0112 (15)0.0167 (16)0.0071 (14)
C30.050 (2)0.053 (2)0.040 (2)0.0066 (17)0.0149 (17)−0.0007 (16)
C40.042 (2)0.058 (2)0.053 (2)0.0034 (17)0.0137 (18)0.0078 (18)
C50.044 (2)0.061 (2)0.071 (3)0.0128 (19)0.029 (2)0.006 (2)
C60.060 (3)0.053 (2)0.063 (3)0.0093 (19)0.032 (2)−0.0051 (18)
C70.086 (3)0.075 (3)0.058 (3)0.021 (2)0.010 (2)0.003 (2)

Geometric parameters (Å, °)

Cl1—C41.741 (4)C1—C61.397 (5)
S1—O21.419 (3)C2—C31.380 (5)
S1—O11.426 (3)C3—C41.363 (4)
S1—N11.621 (3)C3—H30.9300
S1—C71.739 (4)C4—C51.368 (5)
O3—N21.231 (3)C5—C61.375 (5)
O4—N21.215 (3)C5—H50.9300
N1—C11.397 (4)C6—H60.9300
N1—H10.80 (3)C7—H80.9600
N2—C21.461 (4)C7—H90.9600
C1—C21.397 (4)C7—H70.9600
O2—S1—O1118.43 (17)C4—C3—C2119.7 (3)
O2—S1—N1109.28 (17)C4—C3—H3120.1
O1—S1—N1104.05 (17)C2—C3—H3120.1
O2—S1—C7108.5 (2)C3—C4—C5120.2 (3)
O1—S1—C7110.0 (2)C3—C4—Cl1119.5 (3)
N1—S1—C7105.77 (19)C5—C4—Cl1120.3 (3)
C1—N1—S1130.3 (3)C4—C5—C6120.2 (3)
C1—N1—H1118 (3)C4—C5—H5119.9
S1—N1—H1108 (3)C6—C5—H5119.9
O4—N2—O3121.9 (3)C5—C6—C1121.8 (3)
O4—N2—C2118.6 (3)C5—C6—H6119.1
O3—N2—C2119.5 (3)C1—C6—H6119.1
C2—C1—C6116.0 (3)S1—C7—H8109.5
C2—C1—N1122.1 (3)S1—C7—H9109.5
C6—C1—N1121.9 (3)H8—C7—H9109.5
C3—C2—C1122.1 (3)S1—C7—H7109.5
C3—C2—N2115.7 (3)H8—C7—H7109.5
C1—C2—N2122.2 (3)H9—C7—H7109.5
O2—S1—N1—C1−37.6 (4)O4—N2—C2—C1163.9 (3)
O1—S1—N1—C1−165.0 (3)O3—N2—C2—C1−17.0 (4)
C7—S1—N1—C179.0 (4)C1—C2—C3—C4−0.1 (5)
S1—N1—C1—C2−161.2 (3)N2—C2—C3—C4−179.5 (3)
S1—N1—C1—C621.0 (5)C2—C3—C4—C5−1.7 (5)
C6—C1—C2—C31.3 (5)C2—C3—C4—Cl1178.3 (3)
N1—C1—C2—C3−176.7 (3)C3—C4—C5—C62.2 (6)
C6—C1—C2—N2−179.3 (3)Cl1—C4—C5—C6−177.8 (3)
N1—C1—C2—N22.7 (5)C4—C5—C6—C1−1.0 (6)
O4—N2—C2—C3−16.6 (4)C2—C1—C6—C5−0.7 (5)
O3—N2—C2—C3162.5 (3)N1—C1—C6—C5177.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O30.80 (4)2.03 (4)2.631 (4)131 (3)
C3—H3···O3i0.932.593.417 (4)148
C5—H5···O2ii0.932.473.325 (5)152
C6—H6···O20.932.272.951 (5)130
C7—H8···O3iii0.962.533.394 (5)150

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2794).

References

  • Ahn, K. H., Ham, C., Kim, S.-K. & Cho, C.-W. (1997). J. Org. Chem.62, 7047–7048.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl.33, 2067–2069.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
  • Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett.40, 4761–4763.
  • Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett.32, 409–411.
  • Oppolzer, W., Kingma, A. J. & Pillai, S.-K. (1991). Tetrahedron Lett.32, 4893–4895.
  • Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem.15, 5105–5109. [PubMed]
  • Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc.120, 10994–10995.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett.17, 255–259. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1775.
  • Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. In the press. doi: 10.1016/j.ejmech.2008.08.002.
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography