PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1976.
Published online 2008 September 20. doi:  10.1107/S1600536808029899
PMCID: PMC2959436

4-Chloro-N-(3-methoxy­phen­yl)­benz­amide

Abstract

The title benzamide derivative, C14H12ClNO2, crystallizes with two independent mol­ecules in the asymmetric unit. Both are close to being planar, with dihedral angles between the two benzene rings of 11.92 (6) and 12.80 (7)°. In the crystal structure, N—H(...)O hydrogen bonds link mol­ecules into chains along a. These inter­actions are augmented by C—H(...)O hydrogen bonds to form two-dimensional layers in the ac plane. Additional C—H(...)O inter­actions result in a three-dimensional network consisting of undulating rows along c. The crystal studied was an inversion twin with a 0.59 (3):0.41 (3) domain ratio.

Related literature

For background on the applications of benzanilides, see: Zhichkin et al. (2007 [triangle]); Igawa et al. (1999 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1976-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO2
  • M r = 261.70
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1976-efi1.jpg
  • a = 9.6952 (4) Å
  • b = 10.5671 (3) Å
  • c = 24.3512 (8) Å
  • V = 2494.78 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 91 (2) K
  • 0.80 × 0.27 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.771, T max = 0.948
  • 47170 measured reflections
  • 8997 independent reflections
  • 8334 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.087
  • S = 1.05
  • 8997 reflections
  • 336 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3581 Friedel pairs
  • Flack parameter: 0.59 (3)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029899/hb2792sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029899/hb2792Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme. We also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

Benzanilides have important uses in organic synthesis (e.g. Zhichkin et al., 2007) and show biological activity (e.g. Igawa et al., 1999).

The title compound, (I), crystallized as an inversion twin in the crystal studied with two independent molecules, A and B, in the asymmetric unit. Bond distances and angles within the molecules are normal (Allen et al., 1987). Each molecule deviates slightly from planarity with dihedral angles between the two benzene rings of 11.92 (6)° for A and 12.80 (7)° for B.

In the crystal structure, N—H···O hydrogen bonds link molecules into chains along a (Table 1). These interactions are augmented by C—H···O hydrogen bonds to form two dimensional layers in the ac plane, Fig 2. Additional C—H···O interactions result in a three dimensional network consisting of undulating rows along c, Fig 3.

Experimental

4-Chorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 3-methoxyaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aqueous 1 M HCl and saturated aqueous NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (yield = 81%) as colourless needles: Analysis calculated. for C14H12ClNO2: C 64.25, H 4.62, N 5.35%; found: C 64.19, H 4.68, N 5.30%.

Refinement

The crystal chosen was the smallest available without having to resort to potentially damaging cutting procedures.

The N-bound H atoms were located in a difference map and refined freely with isotropic displacememt parameters. The C-bound H atoms were geometrically placed (C—H = 0.95-0.98Å) and refined as riding with Uiso= 1.2Ueq(C) or 1.5Ueq(methyl C). The crystal studied was an inversion twin with a 0.59 (3):0.41 (3) domain ratio.

Figures

Fig. 1.
The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
The two dimensional network in (I) formed by N—H···O and C—H···O interactions.
Fig. 3.
Crystal packing of (I) viewed down the a axis.

Crystal data

C14H12ClNO2F(000) = 1088
Mr = 261.70Dx = 1.393 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8842 reflections
a = 9.6952 (4) Åθ = 2.3–32.7°
b = 10.5671 (3) ŵ = 0.30 mm1
c = 24.3512 (8) ÅT = 91 K
V = 2494.78 (15) Å3Rod, colourless
Z = 80.80 × 0.27 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer8997 independent reflections
Radiation source: fine-focus sealed tube8334 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 33.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −14→11
Tmin = 0.771, Tmax = 0.948k = −16→16
47170 measured reflectionsl = −35→36

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3361P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8997 reflectionsΔρmax = 0.43 e Å3
336 parametersΔρmin = −0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 3581 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.59 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1A0.44661 (12)−0.01256 (11)0.37778 (4)0.01480 (19)
O1A0.33061 (9)−0.01825 (10)0.39873 (4)0.0241 (2)
C2A0.46264 (12)0.02718 (10)0.31915 (4)0.01340 (18)
C3A0.36632 (12)0.11223 (11)0.29781 (5)0.0164 (2)
H3A0.29460.14340.32070.020*
C4A0.37391 (13)0.15185 (11)0.24357 (5)0.0172 (2)
H4A0.30950.21130.22950.021*
C5A0.47765 (13)0.10288 (10)0.21016 (4)0.0166 (2)
Cl1A0.48931 (4)0.15338 (3)0.142463 (11)0.02479 (7)
C6A0.57279 (13)0.01592 (11)0.22997 (4)0.0175 (2)
H6A0.6418−0.01800.20650.021*
C7A0.56516 (12)−0.02073 (10)0.28487 (4)0.01525 (19)
H7A0.6306−0.07910.29910.018*
N1A0.56370 (10)−0.04026 (9)0.40506 (4)0.01410 (17)
H1NA0.6396 (18)−0.0282 (16)0.3886 (7)0.021 (4)*
C8A0.57503 (12)−0.08292 (10)0.46008 (4)0.01315 (18)
C9A0.47507 (12)−0.05885 (10)0.49949 (4)0.01510 (19)
H9A0.3933−0.01450.48990.018*
C10A0.49561 (12)−0.10044 (10)0.55337 (4)0.0160 (2)
O2A0.39068 (10)−0.07027 (9)0.58869 (3)0.02047 (17)
C14A0.39789 (14)−0.11940 (12)0.64324 (5)0.0224 (2)
H14A0.3922−0.21200.64210.034*
H14B0.3210−0.08590.66500.034*
H14C0.4854−0.09410.66010.034*
C11A0.61594 (13)−0.16314 (11)0.56841 (5)0.0179 (2)
H11A0.6298−0.19030.60520.021*
C12A0.71576 (13)−0.18529 (11)0.52836 (5)0.0185 (2)
H12A0.7989−0.22700.53830.022*
C13A0.69619 (12)−0.14772 (11)0.47434 (5)0.0162 (2)
H13A0.7641−0.16560.44730.019*
C1B−0.05241 (12)−0.00261 (10)0.37999 (4)0.01368 (19)
O1B−0.16985 (9)−0.00419 (9)0.36016 (3)0.01997 (17)
C2B−0.02802 (12)0.04716 (10)0.43684 (4)0.01360 (18)
C3B0.07492 (12)−0.00094 (11)0.47086 (4)0.01501 (19)
H3B0.1339−0.06600.45770.018*
C4B0.09238 (13)0.04536 (11)0.52393 (4)0.0172 (2)
H4B0.16180.01180.54730.021*
C5B0.00613 (13)0.14154 (10)0.54198 (4)0.0171 (2)
Cl1B0.02837 (4)0.19996 (3)0.608166 (12)0.02653 (7)
C6B−0.09805 (13)0.19097 (11)0.50899 (5)0.0193 (2)
H6B−0.15580.25700.52210.023*
C7B−0.11618 (13)0.14216 (11)0.45660 (5)0.0174 (2)
H7B−0.18860.17320.43400.021*
N1B0.06041 (10)−0.04339 (9)0.35250 (4)0.01450 (17)
H1NB0.1425 (18)−0.0346 (16)0.3682 (7)0.021 (4)*
C8B0.06282 (12)−0.09968 (10)0.29958 (4)0.01377 (19)
C9B−0.04236 (12)−0.08284 (11)0.26127 (4)0.0157 (2)
H9B−0.1206−0.03270.27010.019*
C10B−0.03149 (13)−0.14050 (11)0.20975 (4)0.0163 (2)
O2B−0.14035 (10)−0.11702 (9)0.17528 (4)0.02185 (18)
C14B−0.13097 (13)−0.16277 (12)0.12016 (4)0.0205 (2)
H14D−0.0436−0.13500.10390.031*
H14E−0.2080−0.12920.09850.031*
H14F−0.1349−0.25540.12020.031*
C11B0.08319 (13)−0.21239 (11)0.19574 (5)0.0193 (2)
H11B0.0899−0.25090.16060.023*
C12B0.18814 (14)−0.22688 (12)0.23434 (5)0.0204 (2)
H12B0.2675−0.27510.22510.024*
C13B0.17912 (13)−0.17224 (11)0.28614 (5)0.0175 (2)
H13B0.2510−0.18390.31220.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C1A0.0113 (5)0.0201 (5)0.0130 (4)−0.0011 (4)−0.0008 (4)0.0000 (3)
O1A0.0102 (4)0.0468 (6)0.0152 (4)−0.0008 (4)0.0008 (3)0.0043 (4)
C2A0.0114 (5)0.0159 (4)0.0129 (4)−0.0015 (4)−0.0004 (4)−0.0008 (3)
C3A0.0152 (5)0.0199 (5)0.0142 (4)0.0028 (4)−0.0003 (4)−0.0018 (4)
C4A0.0194 (5)0.0167 (4)0.0155 (4)0.0020 (4)−0.0035 (4)−0.0001 (4)
C5A0.0193 (5)0.0188 (4)0.0116 (4)−0.0043 (4)−0.0018 (4)0.0007 (3)
Cl1A0.03200 (17)0.02910 (14)0.01326 (10)−0.00233 (12)0.00006 (11)0.00451 (9)
C6A0.0160 (5)0.0236 (5)0.0129 (4)0.0002 (4)0.0015 (4)−0.0023 (4)
C7A0.0126 (5)0.0188 (4)0.0143 (4)0.0016 (4)−0.0010 (4)−0.0014 (4)
N1A0.0097 (4)0.0202 (4)0.0124 (4)−0.0002 (3)0.0005 (3)0.0010 (3)
C8A0.0125 (5)0.0151 (4)0.0118 (4)−0.0022 (4)−0.0016 (4)0.0005 (3)
C9A0.0130 (5)0.0179 (4)0.0144 (4)0.0006 (4)−0.0009 (4)0.0008 (3)
C10A0.0164 (5)0.0173 (4)0.0143 (4)−0.0004 (4)0.0004 (4)0.0005 (3)
O2A0.0190 (4)0.0299 (4)0.0125 (3)0.0046 (4)0.0033 (3)0.0028 (3)
C14A0.0258 (6)0.0283 (6)0.0129 (4)−0.0009 (5)0.0033 (5)0.0034 (4)
C11A0.0192 (5)0.0199 (5)0.0145 (4)0.0013 (4)−0.0012 (4)0.0036 (4)
C12A0.0170 (5)0.0191 (5)0.0194 (5)0.0036 (4)−0.0018 (4)0.0036 (4)
C13A0.0132 (5)0.0182 (5)0.0174 (5)0.0012 (4)0.0012 (4)0.0019 (4)
C1B0.0103 (5)0.0179 (4)0.0128 (4)0.0003 (4)0.0025 (3)0.0020 (3)
O1B0.0096 (4)0.0351 (5)0.0152 (3)0.0004 (3)0.0008 (3)−0.0002 (3)
C2B0.0115 (5)0.0172 (4)0.0121 (4)−0.0004 (4)0.0022 (4)0.0015 (3)
C3B0.0129 (5)0.0187 (4)0.0135 (4)0.0023 (4)0.0020 (4)−0.0005 (4)
C4B0.0157 (5)0.0220 (5)0.0138 (4)0.0014 (4)0.0010 (4)−0.0009 (4)
C5B0.0197 (6)0.0184 (4)0.0133 (4)−0.0021 (4)0.0040 (4)−0.0032 (3)
Cl1B0.03451 (17)0.02830 (14)0.01679 (11)−0.00085 (13)0.00243 (12)−0.00894 (10)
C6B0.0214 (6)0.0177 (4)0.0188 (5)0.0048 (4)0.0065 (4)−0.0002 (4)
C7B0.0160 (5)0.0206 (5)0.0157 (5)0.0037 (4)0.0030 (4)0.0026 (4)
N1B0.0094 (4)0.0220 (4)0.0121 (4)0.0009 (3)−0.0001 (3)−0.0009 (3)
C8B0.0129 (5)0.0172 (4)0.0113 (4)−0.0006 (4)0.0017 (4)0.0005 (3)
C9B0.0134 (5)0.0201 (5)0.0137 (4)0.0022 (4)0.0008 (4)−0.0011 (4)
C10B0.0158 (5)0.0199 (5)0.0133 (4)0.0009 (4)−0.0003 (4)−0.0008 (3)
O2B0.0181 (4)0.0333 (5)0.0142 (3)0.0051 (4)−0.0031 (3)−0.0068 (3)
C14B0.0219 (6)0.0268 (5)0.0127 (4)−0.0008 (5)0.0004 (4)−0.0045 (4)
C11B0.0203 (6)0.0210 (5)0.0165 (5)0.0044 (4)0.0011 (4)−0.0033 (4)
C12B0.0182 (6)0.0234 (5)0.0195 (5)0.0075 (5)0.0008 (4)−0.0022 (4)
C13B0.0147 (5)0.0215 (5)0.0164 (5)0.0044 (4)0.0003 (4)−0.0004 (4)

Geometric parameters (Å, °)

C1A—O1A1.2364 (14)C1B—O1B1.2369 (14)
C1A—N1A1.3475 (14)C1B—N1B1.3529 (14)
C1A—C2A1.4964 (14)C1B—C2B1.4997 (14)
C2A—C7A1.3932 (15)C2B—C3B1.3931 (15)
C2A—C3A1.3963 (15)C2B—C7B1.4035 (15)
C3A—C4A1.3875 (15)C3B—C4B1.3920 (15)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.3933 (17)C4B—C5B1.3876 (16)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.3884 (17)C5B—C6B1.3921 (17)
C5A—Cl1A1.7364 (10)C5B—Cl1B1.7394 (11)
C6A—C7A1.3939 (15)C6B—C7B1.3872 (16)
C6A—H6A0.9500C6B—H6B0.9500
C7A—H7A0.9500C7B—H7B0.9500
N1A—C8A1.4178 (13)N1B—C8B1.4194 (13)
N1A—H1NA0.847 (18)N1B—H1NB0.887 (18)
C8A—C9A1.3874 (15)C8B—C9B1.3936 (16)
C8A—C13A1.4033 (16)C8B—C13B1.4023 (16)
C9A—C10A1.3980 (14)C9B—C10B1.3987 (14)
C9A—H9A0.9500C9B—H9B0.9500
C10A—O2A1.3697 (14)C10B—O2B1.3711 (14)
C10A—C11A1.3908 (17)C10B—C11B1.3891 (17)
O2A—C14A1.4281 (14)O2B—C14B1.4295 (13)
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C11A—C12A1.3938 (17)C11B—C12B1.3936 (17)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.3869 (16)C12B—C13B1.3900 (16)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
O1A—C1A—N1A123.52 (10)O1B—C1B—N1B123.15 (10)
O1A—C1A—C2A120.13 (10)O1B—C1B—C2B120.68 (10)
N1A—C1A—C2A116.35 (10)N1B—C1B—C2B116.17 (10)
C7A—C2A—C3A119.22 (10)C3B—C2B—C7B119.56 (10)
C7A—C2A—C1A122.94 (10)C3B—C2B—C1B122.27 (10)
C3A—C2A—C1A117.79 (10)C7B—C2B—C1B118.12 (10)
C4A—C3A—C2A120.86 (10)C4B—C3B—C2B120.73 (10)
C4A—C3A—H3A119.6C4B—C3B—H3B119.6
C2A—C3A—H3A119.6C2B—C3B—H3B119.6
C3A—C4A—C5A118.82 (11)C5B—C4B—C3B118.56 (11)
C3A—C4A—H4A120.6C5B—C4B—H4B120.7
C5A—C4A—H4A120.6C3B—C4B—H4B120.7
C6A—C5A—C4A121.50 (10)C4B—C5B—C6B121.96 (10)
C6A—C5A—Cl1A119.34 (9)C4B—C5B—Cl1B118.60 (9)
C4A—C5A—Cl1A119.16 (9)C6B—C5B—Cl1B119.43 (9)
C5A—C6A—C7A118.81 (10)C7B—C6B—C5B118.88 (10)
C5A—C6A—H6A120.6C7B—C6B—H6B120.6
C7A—C6A—H6A120.6C5B—C6B—H6B120.6
C2A—C7A—C6A120.76 (10)C6B—C7B—C2B120.27 (11)
C2A—C7A—H7A119.6C6B—C7B—H7B119.9
C6A—C7A—H7A119.6C2B—C7B—H7B119.9
C1A—N1A—C8A126.89 (10)C1B—N1B—C8B126.59 (10)
C1A—N1A—H1NA117.8 (11)C1B—N1B—H1NB118.6 (11)
C8A—N1A—H1NA115.3 (11)C8B—N1B—H1NB114.8 (11)
C9A—C8A—C13A120.19 (10)C9B—C8B—C13B120.13 (10)
C9A—C8A—N1A122.76 (10)C9B—C8B—N1B122.83 (10)
C13A—C8A—N1A117.00 (10)C13B—C8B—N1B117.02 (10)
C8A—C9A—C10A119.48 (10)C8B—C9B—C10B119.33 (10)
C8A—C9A—H9A120.3C8B—C9B—H9B120.3
C10A—C9A—H9A120.3C10B—C9B—H9B120.3
O2A—C10A—C11A124.65 (10)O2B—C10B—C11B124.39 (10)
O2A—C10A—C9A114.22 (10)O2B—C10B—C9B114.35 (10)
C11A—C10A—C9A121.10 (10)C11B—C10B—C9B121.25 (11)
C10A—O2A—C14A117.59 (9)C10B—O2B—C14B117.69 (9)
O2A—C14A—H14A109.5O2B—C14B—H14D109.5
O2A—C14A—H14B109.5O2B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
O2A—C14A—H14C109.5O2B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C10A—C11A—C12A118.56 (10)C10B—C11B—C12B118.61 (10)
C10A—C11A—H11A120.7C10B—C11B—H11B120.7
C12A—C11A—H11A120.7C12B—C11B—H11B120.7
C13A—C12A—C11A121.37 (11)C13B—C12B—C11B121.37 (11)
C13A—C12A—H12A119.3C13B—C12B—H12B119.3
C11A—C12A—H12A119.3C11B—C12B—H12B119.3
C12A—C13A—C8A119.27 (10)C12B—C13B—C8B119.31 (11)
C12A—C13A—H13A120.4C12B—C13B—H13B120.3
C8A—C13A—H13A120.4C8B—C13B—H13B120.3
O1A—C1A—C2A—C7A−146.54 (12)O1B—C1B—C2B—C3B147.65 (12)
N1A—C1A—C2A—C7A33.66 (15)N1B—C1B—C2B—C3B−32.96 (15)
O1A—C1A—C2A—C3A30.77 (16)O1B—C1B—C2B—C7B−29.90 (15)
N1A—C1A—C2A—C3A−149.03 (11)N1B—C1B—C2B—C7B149.49 (10)
C7A—C2A—C3A—C4A−1.76 (17)C7B—C2B—C3B—C4B−0.84 (17)
C1A—C2A—C3A—C4A−179.17 (10)C1B—C2B—C3B—C4B−178.36 (10)
C2A—C3A—C4A—C5A1.56 (17)C2B—C3B—C4B—C5B−0.79 (17)
C3A—C4A—C5A—C6A−0.02 (17)C3B—C4B—C5B—C6B1.13 (17)
C3A—C4A—C5A—Cl1A−179.20 (9)C3B—C4B—C5B—Cl1B−179.70 (9)
C4A—C5A—C6A—C7A−1.29 (17)C4B—C5B—C6B—C7B0.20 (18)
Cl1A—C5A—C6A—C7A177.90 (9)Cl1B—C5B—C6B—C7B−178.97 (9)
C3A—C2A—C7A—C6A0.41 (16)C5B—C6B—C7B—C2B−1.86 (17)
C1A—C2A—C7A—C6A177.69 (10)C3B—C2B—C7B—C6B2.19 (16)
C5A—C6A—C7A—C2A1.08 (17)C1B—C2B—C7B—C6B179.81 (10)
O1A—C1A—N1A—C8A1.95 (19)O1B—C1B—N1B—C8B−3.85 (18)
C2A—C1A—N1A—C8A−178.25 (10)C2B—C1B—N1B—C8B176.77 (10)
C1A—N1A—C8A—C9A−24.49 (17)C1B—N1B—C8B—C9B22.32 (17)
C1A—N1A—C8A—C13A157.99 (11)C1B—N1B—C8B—C13B−159.27 (11)
C13A—C8A—C9A—C10A−0.46 (16)C13B—C8B—C9B—C10B0.94 (17)
N1A—C8A—C9A—C10A−177.90 (10)N1B—C8B—C9B—C10B179.31 (10)
C8A—C9A—C10A—O2A179.44 (10)C8B—C9B—C10B—O2B−179.68 (10)
C8A—C9A—C10A—C11A1.42 (17)C8B—C9B—C10B—C11B−1.12 (17)
C11A—C10A—O2A—C14A−7.68 (17)C11B—C10B—O2B—C14B−4.22 (17)
C9A—C10A—O2A—C14A174.37 (10)C9B—C10B—O2B—C14B174.29 (10)
O2A—C10A—C11A—C12A−178.57 (11)O2B—C10B—C11B—C12B178.73 (12)
C9A—C10A—C11A—C12A−0.76 (17)C9B—C10B—C11B—C12B0.32 (18)
C10A—C11A—C12A—C13A−0.87 (18)C10B—C11B—C12B—C13B0.67 (19)
C11A—C12A—C13A—C8A1.81 (18)C11B—C12B—C13B—C8B−0.83 (18)
C9A—C8A—C13A—C12A−1.13 (17)C9B—C8B—C13B—C12B0.01 (17)
N1A—C8A—C13A—C12A176.46 (10)N1B—C8B—C13B—C12B−178.44 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O1A0.887 (18)1.977 (18)2.8638 (13)176.4 (15)
C3B—H3B···O1A0.952.443.0436 (14)121
C4B—H4B···O2A0.952.593.5134 (15)165
N1A—H1NA···O1Bi0.847 (18)1.989 (18)2.8309 (13)172.0 (16)
C6A—H6A···O2Bi0.952.483.3885 (15)161
C7A—H7A···O1Bi0.952.573.1611 (14)121

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2792).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2006). APEXII, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Japanese Patent Kokai Tokkyo Koho, JP 11171848.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography