PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1327.
Published online 2008 September 27. doi:  10.1107/S1600536808030547
PMCID: PMC2959435

catena-Poly[[bis­[2-chloro-6-(1H-1,2,4-triazol-1-yl-κN 4)pyridine]cadmium(II)]-di-μ-thio­cyanato-κ2 N:S2 S:N]: a one-dimensional coordination polymer

Abstract

In the crystal structure of the title complex, [Cd(NCS)2(C7H5ClN4)2]n, the CdII atom lies on a crystallographic inversion center and assumes a distorted octa­hedral geometry. The 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine mol­ecule acts as a terminal ligand. The thio­cyanate ligands function as μ1,3-bridging units connecting adjacent CdII atoms with a separation of 5.7525 (11) Å, forming a one-dimensional chain along the a axis.

Related literature

For a related structure, see: Shi et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1327-scheme1.jpg

Experimental

Crystal data

  • [Cd(NCS)2(C7H5ClN4)2]
  • M r = 589.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1327-efi1.jpg
  • a = 5.7525 (11) Å
  • b = 8.0180 (15) Å
  • c = 12.212 (2) Å
  • α = 107.609 (3)°
  • β = 90.095 (2)°
  • γ = 91.950 (3)°
  • V = 536.53 (18) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.49 mm−1
  • T = 298 (2) K
  • 0.23 × 0.21 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.726, T max = 0.865
  • 2892 measured reflections
  • 2005 independent reflections
  • 1903 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.071
  • S = 1.03
  • 2005 reflections
  • 143 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030547/is2339sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030547/is2339Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Doctors’ Foundation of Binzhou University.

supplementary crystallographic information

Comment

For a long time, thiocyanate anion has been used as a bridge ligand and a number of complexes with it have been published (Shi et al., 2006). But complex dealing with 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine as a ligand has not been reported as yet as our knowledge. The interest in complexes with mixed bridge ligands resulted in us synthesizing the title complex and here we report its crystal structure, (I).

The asymmetric unit and symmetry-related fragments of (I) are shown in Fig. 1. Atom Cd1 is located on an inversion center and is in a distorted octahedral CdN4S2 coordination geometry (Table 1). In the crystal 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine molecule only acts as a unidentate terminal ligand, and thiocyanate anion functions as a µ-1,3 bridge ligand and joins a pair of CdII ions with separation of 5.7525 (11) Å. In this way a one-dimensional chain along a axis was fabricated as shown in Fig. 2. In addition, there is a weak π-π stacking interaction involving symmetry related 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine molecules, with relevant distances being Cg1···Cg2i = 3.7095 (19) Å, Cg1···Cg2iperp = 3.427 Å, α = 4.24° [symmetry code: (i) -x, 2-y,1-z; Cg1 and Cg2 are the centroids of the pyrazole ring and pyridyl ring, respectively; Cg1···Cg2iperp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between plane Cg1 and plane Cg2i.

Experimental

15 ml H2O solution containing Cd(ClO4)2.6H2O (0.1507 g, 0.359 mmol) and NaSCN (0.0591 g, 0.729 mmol) was added into 15 ml methanol solution of 2-chloro-6-(1H-1,2,4-triazol-1-yl)pyridine (0.1203 g, 0.666 mmol), and the mixed solution was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about three weeks.

Refinement

All H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
View of complex (I), showing the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (i) -x, -y + 2, -z + 2; (ii) x - 1, y, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y + 2, -z + 2].
Fig. 2.
Packing diagram of (I), showing one-dimensional chains.

Crystal data

[Cd(NCS)2(C7H5ClN4)2]Z = 1
Mr = 589.76F(000) = 290
Triclinic, P1Dx = 1.825 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7525 (11) ÅCell parameters from 1921 reflections
b = 8.0180 (15) Åθ = 2.7–28.1°
c = 12.212 (2) ŵ = 1.49 mm1
α = 107.609 (3)°T = 298 K
β = 90.095 (2)°Block, colorless
γ = 91.950 (3)°0.23 × 0.21 × 0.10 mm
V = 536.53 (18) Å3

Data collection

Bruker SMART APEX CCD diffractometer2005 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.8°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→7
Tmin = 0.726, Tmax = 0.865k = −9→8
2892 measured reflectionsl = −11→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071w = 1/[σ2(Fo2) + (0.0366P)2 + 0.1572P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2005 reflectionsΔρmax = 0.34 e Å3
143 parametersΔρmin = −0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0042 (5)0.8697 (4)0.7162 (2)0.0411 (6)
H1−0.14360.80650.71390.049*
C20.1609 (7)0.7193 (5)0.3111 (3)0.0639 (9)
H20.25490.73100.25180.077*
C30.2948 (5)1.0298 (4)0.7697 (2)0.0534 (8)
H30.40581.10350.81780.064*
C40.5043 (5)1.2276 (4)1.0409 (2)0.0421 (6)
C50.2157 (6)0.8143 (4)0.4239 (2)0.0543 (8)
H50.34440.89130.44260.065*
C60.0695 (5)0.7883 (3)0.5063 (2)0.0406 (6)
C7−0.1629 (6)0.5969 (4)0.3779 (2)0.0484 (7)
C8−0.0303 (7)0.6092 (4)0.2872 (2)0.0597 (8)
H8−0.06960.54460.21210.072*
Cd10.00001.00001.00000.04300 (14)
Cl1−0.40595 (17)0.45711 (12)0.35184 (8)0.0709 (3)
N10.1037 (4)0.9656 (3)0.81047 (18)0.0446 (5)
N20.1161 (4)0.8768 (3)0.62460 (17)0.0401 (5)
N30.3112 (4)0.9806 (3)0.65819 (19)0.0530 (6)
N4−0.1181 (4)0.6839 (3)0.48723 (18)0.0420 (5)
N50.3274 (4)1.1798 (4)1.0652 (2)0.0538 (6)
S10.75769 (13)1.29435 (10)1.00393 (6)0.0488 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0387 (14)0.0535 (15)0.0288 (12)−0.0045 (11)0.0033 (10)0.0098 (11)
C20.081 (2)0.078 (2)0.0301 (15)−0.0033 (18)0.0091 (14)0.0133 (14)
C30.0507 (17)0.073 (2)0.0300 (13)−0.0198 (15)0.0021 (12)0.0083 (13)
C40.0382 (15)0.0524 (16)0.0289 (12)−0.0036 (12)−0.0049 (10)0.0026 (11)
C50.065 (2)0.0628 (19)0.0318 (14)−0.0065 (15)0.0078 (13)0.0112 (13)
C60.0517 (16)0.0411 (14)0.0278 (12)0.0034 (12)0.0011 (11)0.0084 (10)
C70.0575 (18)0.0419 (15)0.0413 (15)0.0064 (12)−0.0075 (13)0.0052 (11)
C80.083 (2)0.0602 (19)0.0292 (14)0.0067 (17)−0.0040 (14)0.0025 (13)
Cd10.02956 (18)0.0703 (2)0.02358 (16)−0.01005 (12)0.00224 (10)0.00706 (12)
Cl10.0652 (6)0.0672 (5)0.0659 (5)−0.0086 (4)−0.0153 (4)0.0000 (4)
N10.0437 (13)0.0585 (14)0.0279 (11)−0.0047 (10)0.0042 (9)0.0085 (10)
N20.0434 (13)0.0482 (12)0.0263 (10)−0.0039 (10)0.0034 (9)0.0082 (9)
N30.0533 (15)0.0698 (16)0.0312 (12)−0.0195 (12)0.0052 (10)0.0105 (11)
N40.0487 (14)0.0434 (12)0.0321 (11)0.0048 (10)−0.0018 (9)0.0084 (9)
N50.0360 (14)0.0676 (16)0.0479 (14)−0.0086 (11)0.0004 (10)0.0035 (12)
S10.0407 (4)0.0620 (5)0.0401 (4)−0.0104 (3)0.0037 (3)0.0113 (3)

Geometric parameters (Å, °)

C1—N11.316 (3)C6—N21.425 (3)
C1—N21.331 (3)C7—N41.326 (3)
C1—H10.9300C7—C81.372 (5)
C2—C81.361 (5)C7—Cl11.729 (3)
C2—C51.387 (4)C8—H80.9300
C2—H20.9300Cd1—N5i2.319 (2)
C3—N31.303 (3)Cd1—N52.319 (2)
C3—N11.356 (3)Cd1—N12.328 (2)
C3—H30.9300Cd1—N1i2.328 (2)
C4—N51.146 (4)Cd1—S1ii2.7696 (9)
C4—S11.646 (3)Cd1—S1iii2.7696 (9)
C5—C61.371 (4)N2—N31.360 (3)
C5—H50.9300S1—Cd1iv2.7696 (9)
C6—N41.319 (4)
N1—C1—N2109.8 (2)N5—Cd1—N190.49 (9)
N1—C1—H1125.1N5i—Cd1—N1i90.49 (9)
N2—C1—H1125.1N5—Cd1—N1i89.51 (9)
C8—C2—C5120.1 (3)N1—Cd1—N1i180.000 (1)
C8—C2—H2120.0N5i—Cd1—S1ii91.29 (7)
C5—C2—H2120.0N5—Cd1—S1ii88.71 (7)
N3—C3—N1115.0 (3)N1—Cd1—S1ii90.02 (6)
N3—C3—H3122.5N1i—Cd1—S1ii89.98 (6)
N1—C3—H3122.5N5i—Cd1—S1iii88.71 (7)
N5—C4—S1179.1 (3)N5—Cd1—S1iii91.29 (7)
C6—C5—C2116.3 (3)N1—Cd1—S1iii89.98 (6)
C6—C5—H5121.9N1i—Cd1—S1iii90.02 (6)
C2—C5—H5121.9S1ii—Cd1—S1iii180.0
N4—C6—C5125.8 (3)C1—N1—C3103.0 (2)
N4—C6—N2114.1 (2)C1—N1—Cd1127.88 (18)
C5—C6—N2120.1 (3)C3—N1—Cd1129.05 (18)
N4—C7—C8124.9 (3)C1—N2—N3110.0 (2)
N4—C7—Cl1115.9 (2)C1—N2—C6129.0 (2)
C8—C7—Cl1119.2 (2)N3—N2—C6120.9 (2)
C2—C8—C7117.6 (3)C3—N3—N2102.2 (2)
C2—C8—H8121.2C6—N4—C7115.4 (2)
C7—C8—H8121.2C4—N5—Cd1145.7 (2)
N5i—Cd1—N5180.0C4—S1—Cd1iv97.18 (11)
N5i—Cd1—N189.51 (9)
C8—C2—C5—C60.6 (5)N1—C1—N2—N30.1 (3)
C2—C5—C6—N4−1.0 (5)N1—C1—N2—C6177.3 (3)
C2—C5—C6—N2178.3 (3)N4—C6—N2—C1−1.0 (4)
C5—C2—C8—C70.0 (5)C5—C6—N2—C1179.6 (3)
N4—C7—C8—C2−0.3 (5)N4—C6—N2—N3175.9 (2)
Cl1—C7—C8—C2−179.4 (3)C5—C6—N2—N3−3.5 (4)
N2—C1—N1—C3−0.1 (3)N1—C3—N3—N2−0.1 (4)
N2—C1—N1—Cd1−176.61 (18)C1—N2—N3—C30.0 (3)
N3—C3—N1—C10.1 (4)C6—N2—N3—C3−177.5 (3)
N3—C3—N1—Cd1176.6 (2)C5—C6—N4—C70.8 (4)
N5i—Cd1—N1—C1−1.9 (3)N2—C6—N4—C7−178.6 (2)
N5—Cd1—N1—C1178.1 (3)C8—C7—N4—C6−0.1 (4)
S1ii—Cd1—N1—C1−93.2 (2)Cl1—C7—N4—C6179.1 (2)
S1iii—Cd1—N1—C186.8 (2)N1—Cd1—N5—C4−14.4 (5)
N5i—Cd1—N1—C3−177.6 (3)N1i—Cd1—N5—C4165.6 (5)
N5—Cd1—N1—C32.4 (3)S1ii—Cd1—N5—C4−104.4 (4)
S1ii—Cd1—N1—C391.1 (3)S1iii—Cd1—N5—C475.6 (4)
S1iii—Cd1—N1—C3−88.9 (3)

Symmetry codes: (i) −x, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2339).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography