PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1346–m1347.
Published online 2008 September 27. doi:  10.1107/S1600536808031000
PMCID: PMC2959431

μ-1,2-Bis­(diphenyl­phos­phino)­ethane-κ2 P:P′-bis­{[1,2-bis­(diphenyl­phosphino)­ethane-κ2 P,P′]bromidocopper(I)} acetone disolvate

Abstract

In the crystal structure of the title compound, [Cu2Br2(dppe)3]·2CH3COCH3 [dppe is 1,2-bis­(diphenyl­phosphino)­ethane, C26H24P2], the two Cu centers are bridged by a dppe ligand and each metal center carries one chelating dppe unit, with the fourth coordination site available for the Br anion. The mol­ecule is centrosymmetric, with the center of symmetry located between the methyl­ene C atoms of the bridging dppe ligand. The crystal structure is stabilized by intra­molecular C—H(...)Br hydrogen bonds and inter­molecular π–π inter­actions, with a centroid-to-centroid distance of 3.2055 (1) Å.

Related literature

For related research on phosphanecopper(I) compounds as biological agents, see: Berners-Price et al. (1987 [triangle]); Goldstein et al. (1992 [triangle]); Navon et al. (1995 [triangle]). For related structures, see: Albano et al. (1972 [triangle]); Comba et al. (1999 [triangle]); Darensbourg et al. (1990 [triangle]); Eller et al. (1977 [triangle]); Leoni et al. (1983 [triangle]); Mohr et al. (1991 [triangle]); Di Nicola et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1346-scheme1.jpg

Experimental

Crystal data

  • [Cu2Br2(C26H24P2)3]·2C3H6O
  • M r = 1598.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1346-efi1.jpg
  • a = 12.5301 (6) Å
  • b = 21.8966 (10) Å
  • c = 14.8028 (7) Å
  • β = 105.932 (1)°
  • V = 3905.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 295 (2) K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.691, T max = 0.752
  • 33389 measured reflections
  • 8907 independent reflections
  • 6429 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.129
  • S = 1.02
  • 8907 reflections
  • 435 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031000/sj2542sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031000/sj2542Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

supplementary crystallographic information

Comment

Detailed studies of solution equilibria and dynamics of copper(I) compounds of bidentate phosphanes have attracted considerable interest because of their potential application as potent antitumor agents (Berners-Price et al., 1987) and as free radical scavengers in industrial processes (Goldstein et al., 1992; Navon et al., 1995). Some mononuclear (Darensbourg et al., 1990; Leoni et al., 1983) and dinuclear phosphanecopper(I) compounds (Eller et al., 1977; Mohr et al., 1991) with coordinated and bridging halide anions and with phosphane ligands in various coordination modes have been isolated and characterized. In this work, 1,2-bis(diphenylphosphino)ethane (dppe) was adopted as a ligand which coordinates to the copper(I) ions in both bridging and chelating modes.

The asymmetric unit of the title compound (Fig. 1) consists of one half of the centrosymmetric dinuclear molecule Cu2Br2(dppe)3 and an acetone solvate molecule. In the molecule Cu2Br2(dppe)3, each copper(I) center adopts a distorted tetrahedral geometry due to the constraint imposed by a chelating dppe ligand with a P(1)—Cu(1)—P(2) angle of 89.30 (3)°, which is comparable to what has been observed in other similar structures (Albano et al., 1972; Comba et al., 1999). The copper(I)–phosphane distances are also in the range expected from other known structures (Albano et al., 1972; Comba et al., 1999; Di Nicola et al., 2006).

The title compound can be stablized by intramolecular C—H···Br hydrogen bonds between Br(1)- anions and –CH groups from phenyl rings. Additionally, the structure is held intact through intermolecular π–π stacking interactions [centroid-to-centroid distance of 3.2055 (1) Å], displaying a one-dimensional supramolecular array (Fig. 2).

Experimental

1,2-Bis(diphenylphosphino)ethane (40 mg, 0.1 mmol) was added to an acetone suspension (7 ml) of CuBr (10 mg, 0.07 mmol). After the addition, a precipitate slowly formed and the suspension was stirred for 12 h. The precipitate was filtered off and the resulting colorless filtrate was allowed to cool in a refrigerator. Colorless block shaped crystals were obtained after two weeks. Yield: 10 mg (20%).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å or 0.97 Å, Uiso = 1.2Ueq(C) for aromatic and methylene H atoms; 0.96 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [symmetry code: (A) -x + 1, -y + 1, -z + 1].
Fig. 2.
Packing diagram of the title structure showing the π–π stacking interactions.

Crystal data

[Cu2Br2(C26H24P2)3]·2C3H6OF(000) = 1644
Mr = 1598.23Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6062 reflections
a = 12.5301 (6) Åθ = 2.3–23.5°
b = 21.8966 (10) ŵ = 1.74 mm1
c = 14.8028 (7) ÅT = 295 K
β = 105.932 (1)°Block, colourless
V = 3905.4 (3) Å30.20 × 0.18 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEX area-detector diffractometer8907 independent reflections
Radiation source: fine-focus sealed tube6429 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.691, Tmax = 0.752k = −28→28
33389 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0643P)2 + 1.6786P] where P = (Fo2 + 2Fc2)/3
8907 reflections(Δ/σ)max = 0.001
435 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.37525 (3)0.569117 (17)0.27963 (2)0.04207 (12)
Br10.43216 (4)0.472630 (18)0.22494 (3)0.06925 (14)
P10.19903 (6)0.57078 (4)0.29823 (5)0.04037 (18)
P20.32268 (6)0.64379 (4)0.16474 (5)0.04127 (18)
P30.51111 (6)0.58486 (4)0.41525 (5)0.04102 (19)
O10.6704 (6)0.6982 (3)0.0724 (5)0.200 (2)
C10.0907 (3)0.52128 (14)0.2279 (2)0.0460 (7)
C2−0.0179 (3)0.52408 (17)0.2345 (3)0.0589 (9)
H2−0.03450.54790.28090.071*
C3−0.1007 (3)0.4917 (2)0.1726 (3)0.0726 (11)
H3−0.17300.49370.17760.087*
C4−0.0775 (4)0.4568 (2)0.1038 (3)0.0771 (12)
H4−0.13420.43560.06170.093*
C50.0292 (4)0.4530 (2)0.0968 (3)0.0753 (12)
H50.04510.42900.05030.090*
C60.1137 (3)0.48532 (16)0.1596 (2)0.0571 (9)
H60.18620.48250.15520.069*
C70.1730 (2)0.57326 (15)0.4131 (2)0.0462 (7)
C80.1871 (4)0.6258 (2)0.4651 (3)0.0743 (12)
H80.20350.66200.43880.089*
C90.1774 (4)0.6263 (2)0.5561 (3)0.0931 (14)
H90.18680.66250.59020.112*
C100.1542 (4)0.5734 (2)0.5954 (3)0.0840 (13)
H100.14660.57370.65620.101*
C110.1421 (4)0.5207 (2)0.5464 (3)0.0732 (11)
H110.12800.48460.57410.088*
C120.1507 (3)0.52019 (17)0.4549 (3)0.0583 (9)
H120.14140.48370.42150.070*
C130.1466 (3)0.64480 (15)0.2445 (2)0.0500 (8)
H13A0.06720.64760.23580.060*
H13B0.18220.67800.28500.060*
C140.1726 (2)0.64918 (15)0.1491 (2)0.0475 (7)
H14A0.14530.68770.11930.057*
H14B0.13520.61640.10850.057*
C150.3318 (3)0.63429 (15)0.0446 (2)0.0470 (7)
C160.3772 (3)0.58138 (18)0.0207 (3)0.0615 (9)
H160.40250.55110.06550.074*
C170.3851 (4)0.5733 (2)−0.0706 (3)0.0768 (12)
H170.41630.5376−0.08600.092*
C180.3486 (4)0.6159 (3)−0.1366 (3)0.0796 (13)
H180.35390.6097−0.19740.096*
C190.3035 (4)0.6686 (2)−0.1138 (3)0.0823 (13)
H190.27840.6984−0.15960.099*
C200.2945 (3)0.67856 (19)−0.0235 (2)0.0662 (10)
H200.26370.7146−0.00900.079*
C210.3690 (3)0.72282 (16)0.1894 (2)0.0531 (8)
C220.4791 (3)0.7350 (2)0.1940 (3)0.0744 (11)
H220.52540.70400.18400.089*
C230.5198 (5)0.7950 (3)0.2142 (4)0.1008 (16)
H230.59350.80360.21760.121*
C240.4521 (6)0.8405 (3)0.2287 (4)0.1076 (17)
H240.47970.88000.24120.129*
C250.3452 (5)0.8287 (2)0.2252 (3)0.0970 (15)
H250.29970.85970.23640.116*
C260.3033 (4)0.76971 (17)0.2049 (3)0.0718 (10)
H260.22940.76200.20170.086*
C270.4849 (3)0.64567 (15)0.4905 (2)0.0475 (7)
C280.4577 (3)0.70269 (16)0.4509 (3)0.0602 (9)
H280.45530.70850.38810.072*
C290.4343 (4)0.75082 (19)0.5011 (3)0.0774 (12)
H290.41740.78890.47280.093*
C300.4358 (4)0.7428 (2)0.5926 (4)0.0809 (13)
H300.41830.77520.62670.097*
C310.4630 (4)0.6877 (2)0.6339 (3)0.0831 (13)
H310.46510.68250.69670.100*
C320.4880 (3)0.63863 (18)0.5832 (3)0.0651 (10)
H320.50680.60100.61240.078*
C330.6459 (2)0.60902 (15)0.4006 (2)0.0472 (7)
C340.6647 (3)0.6054 (2)0.3137 (3)0.0666 (10)
H340.61060.58950.26300.080*
C350.7655 (4)0.6258 (2)0.3016 (3)0.0855 (14)
H350.77800.62380.24260.103*
C360.8450 (4)0.6485 (2)0.3751 (4)0.0830 (13)
H360.91170.66200.36620.100*
C370.8283 (3)0.65166 (19)0.4613 (4)0.0785 (12)
H370.88380.66670.51180.094*
C380.7281 (3)0.63241 (17)0.4743 (3)0.0627 (9)
H380.71620.63530.53350.075*
C390.5496 (2)0.51720 (14)0.4915 (2)0.0455 (7)
H39A0.59140.48940.46320.055*
H39B0.59790.53000.55160.055*
C400.6595 (9)0.6699 (4)0.0016 (8)0.188 (2)
C410.6260 (8)0.6948 (4)−0.0902 (6)0.193 (2)
H41A0.58540.7319−0.08940.289*
H41B0.57950.6661−0.13200.289*
H41C0.69030.7034−0.11130.289*
C420.7128 (8)0.6120 (4)0.0087 (7)0.198 (3)
H42A0.78860.61600.04530.297*
H42B0.71040.5975−0.05300.297*
H42C0.67520.58350.03870.297*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0368 (2)0.0466 (2)0.0328 (2)0.00363 (15)0.00805 (15)−0.00058 (15)
Br10.0828 (3)0.0659 (3)0.0499 (2)0.0296 (2)0.0208 (2)−0.00313 (17)
P10.0385 (4)0.0433 (4)0.0407 (4)0.0002 (3)0.0131 (3)0.0015 (3)
P20.0408 (4)0.0452 (4)0.0372 (4)−0.0033 (3)0.0097 (3)0.0021 (3)
P30.0370 (4)0.0487 (5)0.0363 (4)0.0002 (3)0.0081 (3)0.0015 (3)
O10.242 (5)0.196 (5)0.182 (4)−0.043 (4)0.090 (4)−0.045 (4)
C10.0458 (17)0.0483 (18)0.0425 (17)−0.0066 (14)0.0096 (14)0.0054 (14)
C20.0463 (19)0.067 (2)0.062 (2)−0.0061 (16)0.0114 (16)0.0013 (18)
C30.050 (2)0.085 (3)0.076 (3)−0.015 (2)0.0053 (19)0.014 (2)
C40.074 (3)0.083 (3)0.060 (2)−0.031 (2)−0.005 (2)0.002 (2)
C50.089 (3)0.076 (3)0.058 (2)−0.023 (2)0.014 (2)−0.012 (2)
C60.059 (2)0.062 (2)0.051 (2)−0.0112 (17)0.0167 (17)0.0006 (17)
C70.0359 (15)0.059 (2)0.0459 (17)0.0012 (13)0.0149 (13)0.0025 (15)
C80.103 (3)0.070 (3)0.064 (2)−0.018 (2)0.046 (2)−0.012 (2)
C90.124 (4)0.097 (3)0.071 (3)−0.023 (3)0.048 (3)−0.029 (3)
C100.092 (3)0.120 (4)0.050 (2)−0.010 (3)0.036 (2)−0.002 (2)
C110.078 (3)0.085 (3)0.062 (2)0.004 (2)0.029 (2)0.021 (2)
C120.063 (2)0.059 (2)0.056 (2)0.0033 (17)0.0222 (17)0.0058 (17)
C130.0466 (17)0.0470 (18)0.060 (2)0.0072 (14)0.0207 (15)0.0049 (15)
C140.0435 (16)0.0478 (18)0.0487 (18)0.0021 (13)0.0084 (14)0.0085 (14)
C150.0441 (17)0.058 (2)0.0376 (16)−0.0107 (15)0.0095 (13)0.0012 (14)
C160.063 (2)0.074 (2)0.051 (2)0.0039 (19)0.0222 (17)−0.0006 (18)
C170.081 (3)0.099 (3)0.060 (2)−0.008 (2)0.036 (2)−0.013 (2)
C180.081 (3)0.116 (4)0.045 (2)−0.023 (3)0.023 (2)−0.008 (2)
C190.088 (3)0.110 (4)0.045 (2)−0.014 (3)0.012 (2)0.020 (2)
C200.075 (3)0.072 (3)0.046 (2)−0.009 (2)0.0075 (17)0.0068 (18)
C210.067 (2)0.0541 (19)0.0369 (16)−0.0173 (16)0.0125 (15)0.0035 (14)
C220.070 (2)0.085 (3)0.062 (2)−0.029 (2)0.0084 (19)0.006 (2)
C230.099 (3)0.113 (4)0.084 (3)−0.058 (3)0.014 (3)0.005 (3)
C240.152 (5)0.083 (3)0.087 (3)−0.051 (3)0.032 (3)−0.019 (3)
C250.154 (4)0.064 (3)0.083 (3)−0.020 (3)0.049 (3)−0.012 (2)
C260.105 (3)0.050 (2)0.065 (2)−0.012 (2)0.032 (2)−0.0030 (18)
C270.0428 (17)0.0547 (19)0.0439 (17)−0.0046 (14)0.0100 (14)−0.0057 (14)
C280.068 (2)0.058 (2)0.051 (2)0.0054 (18)0.0112 (17)−0.0041 (17)
C290.080 (3)0.058 (2)0.087 (3)0.006 (2)0.012 (2)−0.011 (2)
C300.076 (3)0.080 (3)0.090 (3)−0.008 (2)0.028 (2)−0.037 (3)
C310.092 (3)0.105 (4)0.058 (2)−0.016 (3)0.031 (2)−0.026 (3)
C320.082 (3)0.066 (2)0.049 (2)−0.005 (2)0.0206 (19)−0.0041 (17)
C330.0408 (16)0.0500 (18)0.0513 (18)0.0015 (14)0.0135 (14)0.0051 (15)
C340.049 (2)0.099 (3)0.054 (2)0.0012 (19)0.0168 (17)0.007 (2)
C350.068 (3)0.121 (4)0.078 (3)0.010 (3)0.038 (2)0.025 (3)
C360.057 (2)0.085 (3)0.115 (4)−0.006 (2)0.038 (3)0.014 (3)
C370.054 (2)0.075 (3)0.107 (4)−0.0156 (19)0.023 (2)−0.022 (3)
C380.054 (2)0.065 (2)0.072 (2)−0.0098 (17)0.0218 (18)−0.0135 (19)
C390.0381 (15)0.0523 (18)0.0436 (17)0.0000 (13)0.0069 (13)0.0058 (14)
C400.221 (5)0.172 (5)0.169 (4)−0.058 (4)0.052 (4)−0.042 (4)
C410.213 (5)0.174 (5)0.176 (4)−0.071 (4)0.028 (5)−0.032 (4)
C420.233 (6)0.178 (5)0.167 (5)−0.041 (4)0.029 (5)−0.048 (4)

Geometric parameters (Å, °)

Cu1—P32.2740 (8)C18—H180.9300
Cu1—P12.2992 (8)C19—C201.389 (6)
Cu1—P22.3205 (9)C19—H190.9300
Cu1—Br12.4381 (5)C20—H200.9300
P1—C71.818 (3)C21—C261.374 (5)
P1—C11.824 (3)C21—C221.388 (5)
P1—C131.845 (3)C22—C231.412 (6)
P2—C151.824 (3)C22—H220.9300
P2—C211.830 (3)C23—C241.363 (8)
P2—C141.834 (3)C23—H230.9300
P3—C271.823 (3)C24—C251.352 (7)
P3—C331.838 (3)C24—H240.9300
P3—C391.845 (3)C25—C261.395 (6)
O1—C401.193 (11)C25—H250.9300
C1—C61.373 (5)C26—H260.9300
C1—C21.391 (5)C27—C321.371 (5)
C2—C31.377 (5)C27—C281.381 (5)
C2—H20.9300C28—C291.366 (5)
C3—C41.367 (6)C28—H280.9300
C3—H30.9300C29—C301.362 (6)
C4—C51.372 (6)C29—H290.9300
C4—H40.9300C30—C311.354 (6)
C5—C61.395 (5)C30—H300.9300
C5—H50.9300C31—C321.395 (6)
C6—H60.9300C31—H310.9300
C7—C81.369 (5)C32—H320.9300
C7—C121.381 (5)C33—C341.372 (5)
C8—C91.385 (6)C33—C381.377 (5)
C8—H80.9300C34—C351.396 (5)
C9—C101.362 (6)C34—H340.9300
C9—H90.9300C35—C361.352 (7)
C10—C111.349 (6)C35—H350.9300
C10—H100.9300C36—C371.351 (7)
C11—C121.387 (5)C36—H360.9300
C11—H110.9300C37—C381.387 (5)
C12—H120.9300C37—H370.9300
C13—C141.537 (5)C38—H380.9300
C13—H13A0.9700C39—C39i1.533 (6)
C13—H13B0.9700C39—H39A0.9700
C14—H14A0.9700C39—H39B0.9700
C14—H14B0.9700C40—C411.417 (9)
C15—C161.379 (5)C40—C421.422 (9)
C15—C201.385 (5)C41—H41A0.9600
C16—C171.394 (5)C41—H41B0.9600
C16—H160.9300C41—H41C0.9600
C17—C181.337 (6)C42—H42A0.9600
C17—H170.9300C42—H42B0.9600
C18—C191.368 (7)C42—H42C0.9600
P3—Cu1—P1113.74 (3)C19—C18—H18120.3
P3—Cu1—P2122.23 (3)C18—C19—C20121.2 (4)
P1—Cu1—P289.30 (3)C18—C19—H19119.4
P3—Cu1—Br1102.02 (3)C20—C19—H19119.4
P1—Cu1—Br1115.56 (3)C15—C20—C19119.4 (4)
P2—Cu1—Br1114.67 (3)C15—C20—H20120.3
C7—P1—C1104.76 (14)C19—C20—H20120.3
C7—P1—C13104.07 (15)C26—C21—C22118.8 (4)
C1—P1—C1398.90 (15)C26—C21—P2124.6 (3)
C7—P1—Cu1122.50 (10)C22—C21—P2116.6 (3)
C1—P1—Cu1120.75 (11)C21—C22—C23119.0 (5)
C13—P1—Cu1101.66 (10)C21—C22—H22120.5
C15—P2—C21101.58 (15)C23—C22—H22120.5
C15—P2—C14102.75 (14)C24—C23—C22120.6 (5)
C21—P2—C14102.84 (16)C24—C23—H23119.7
C15—P2—Cu1123.55 (11)C22—C23—H23119.7
C21—P2—Cu1120.64 (11)C25—C24—C23120.5 (5)
C14—P2—Cu1102.29 (10)C25—C24—H24119.8
C27—P3—C33100.83 (15)C23—C24—H24119.8
C27—P3—C39105.88 (15)C24—C25—C26119.7 (5)
C33—P3—C39102.06 (14)C24—C25—H25120.1
C27—P3—Cu1115.67 (11)C26—C25—H25120.1
C33—P3—Cu1115.37 (11)C21—C26—C25121.4 (5)
C39—P3—Cu1115.16 (10)C21—C26—H26119.3
C6—C1—C2119.0 (3)C25—C26—H26119.3
C6—C1—P1119.1 (3)C32—C27—C28117.5 (3)
C2—C1—P1121.5 (3)C32—C27—P3124.7 (3)
C3—C2—C1120.2 (4)C28—C27—P3117.8 (3)
C3—C2—H2119.9C29—C28—C27122.1 (4)
C1—C2—H2119.9C29—C28—H28119.0
C4—C3—C2120.5 (4)C27—C28—H28119.0
C4—C3—H3119.7C30—C29—C28119.7 (4)
C2—C3—H3119.7C30—C29—H29120.2
C3—C4—C5120.1 (4)C28—C29—H29120.2
C3—C4—H4120.0C31—C30—C29119.8 (4)
C5—C4—H4120.0C31—C30—H30120.1
C4—C5—C6119.8 (4)C29—C30—H30120.1
C4—C5—H5120.1C30—C31—C32120.7 (4)
C6—C5—H5120.1C30—C31—H31119.7
C1—C6—C5120.4 (4)C32—C31—H31119.7
C1—C6—H6119.8C27—C32—C31120.2 (4)
C5—C6—H6119.8C27—C32—H32119.9
C8—C7—C12117.8 (3)C31—C32—H32119.9
C8—C7—P1121.5 (3)C34—C33—C38118.7 (3)
C12—C7—P1120.3 (3)C34—C33—P3119.7 (3)
C7—C8—C9121.4 (4)C38—C33—P3121.7 (3)
C7—C8—H8119.3C33—C34—C35119.8 (4)
C9—C8—H8119.3C33—C34—H34120.1
C10—C9—C8119.7 (4)C35—C34—H34120.1
C10—C9—H9120.2C36—C35—C34120.4 (4)
C8—C9—H9120.2C36—C35—H35119.8
C11—C10—C9120.1 (4)C34—C35—H35119.8
C11—C10—H10119.9C37—C36—C35120.6 (4)
C9—C10—H10119.9C37—C36—H36119.7
C10—C11—C12120.3 (4)C35—C36—H36119.7
C10—C11—H11119.8C36—C37—C38119.7 (4)
C12—C11—H11119.8C36—C37—H37120.1
C7—C12—C11120.6 (4)C38—C37—H37120.1
C7—C12—H12119.7C33—C38—C37120.8 (4)
C11—C12—H12119.7C33—C38—H38119.6
C14—C13—P1108.1 (2)C37—C38—H38119.6
C14—C13—H13A110.1C39i—C39—P3114.0 (3)
P1—C13—H13A110.1C39i—C39—H39A108.7
C14—C13—H13B110.1P3—C39—H39A108.7
P1—C13—H13B110.1C39i—C39—H39B108.7
H13A—C13—H13B108.4P3—C39—H39B108.7
C13—C14—P2110.4 (2)H39A—C39—H39B107.6
C13—C14—H14A109.6O1—C40—C41125.0 (10)
P2—C14—H14A109.6O1—C40—C42117.3 (10)
C13—C14—H14B109.6C41—C40—C42115.1 (11)
P2—C14—H14B109.6C40—C41—H41A109.5
H14A—C14—H14B108.1C40—C41—H41B109.5
C16—C15—C20118.8 (3)H41A—C41—H41B109.5
C16—C15—P2119.1 (3)C40—C41—H41C109.5
C20—C15—P2122.1 (3)H41A—C41—H41C109.5
C15—C16—C17120.0 (4)H41B—C41—H41C109.5
C15—C16—H16120.0C40—C42—H42A109.5
C17—C16—H16120.0C40—C42—H42B109.5
C18—C17—C16121.2 (4)H42A—C42—H42B109.5
C18—C17—H17119.4C40—C42—H42C109.5
C16—C17—H17119.4H42A—C42—H42C109.5
C17—C18—C19119.4 (4)H42B—C42—H42C109.5
C17—C18—H18120.3
P3—Cu1—P1—C7−8.49 (14)Cu1—P2—C14—C1339.9 (2)
P2—Cu1—P1—C7−133.75 (13)C21—P2—C15—C16136.2 (3)
Br1—Cu1—P1—C7109.07 (13)C14—P2—C15—C16−117.6 (3)
P3—Cu1—P1—C1−145.43 (12)Cu1—P2—C15—C16−3.3 (3)
P2—Cu1—P1—C189.31 (12)C21—P2—C15—C20−43.9 (3)
Br1—Cu1—P1—C1−27.88 (12)C14—P2—C15—C2062.3 (3)
P3—Cu1—P1—C13106.71 (12)Cu1—P2—C15—C20176.7 (2)
P2—Cu1—P1—C13−18.55 (12)C20—C15—C16—C170.2 (5)
Br1—Cu1—P1—C13−135.73 (12)P2—C15—C16—C17−179.9 (3)
P3—Cu1—P2—C15119.84 (12)C15—C16—C17—C18−0.5 (6)
P1—Cu1—P2—C15−122.24 (12)C16—C17—C18—C190.5 (7)
Br1—Cu1—P2—C15−4.25 (12)C17—C18—C19—C20−0.3 (7)
P3—Cu1—P2—C21−12.44 (15)C16—C15—C20—C190.1 (5)
P1—Cu1—P2—C21105.48 (14)P2—C15—C20—C19−179.9 (3)
Br1—Cu1—P2—C21−136.53 (14)C18—C19—C20—C150.0 (6)
P3—Cu1—P2—C14−125.61 (11)C15—P2—C21—C26114.5 (3)
P1—Cu1—P2—C14−7.68 (11)C14—P2—C21—C268.4 (3)
Br1—Cu1—P2—C14110.30 (11)Cu1—P2—C21—C26−104.5 (3)
P1—Cu1—P3—C27−43.39 (12)C15—P2—C21—C22−66.6 (3)
P2—Cu1—P3—C2761.77 (13)C14—P2—C21—C22−172.8 (3)
Br1—Cu1—P3—C27−168.53 (12)Cu1—P2—C21—C2274.3 (3)
P1—Cu1—P3—C33−160.69 (12)C26—C21—C22—C23−0.2 (5)
P2—Cu1—P3—C33−55.52 (12)P2—C21—C22—C23−179.1 (3)
Br1—Cu1—P3—C3374.17 (12)C21—C22—C23—C24−0.1 (7)
P1—Cu1—P3—C3980.75 (12)C22—C23—C24—C250.8 (8)
P2—Cu1—P3—C39−174.08 (11)C23—C24—C25—C26−1.2 (8)
Br1—Cu1—P3—C39−44.39 (12)C22—C21—C26—C25−0.2 (6)
C7—P1—C1—C6−147.2 (3)P2—C21—C26—C25178.6 (3)
C13—P1—C1—C6105.6 (3)C24—C25—C26—C210.9 (7)
Cu1—P1—C1—C6−3.7 (3)C33—P3—C27—C32−109.5 (3)
C7—P1—C1—C240.1 (3)C39—P3—C27—C32−3.5 (3)
C13—P1—C1—C2−67.1 (3)Cu1—P3—C27—C32125.4 (3)
Cu1—P1—C1—C2−176.4 (2)C33—P3—C27—C2871.9 (3)
C6—C1—C2—C3−0.8 (5)C39—P3—C27—C28177.9 (3)
P1—C1—C2—C3171.9 (3)Cu1—P3—C27—C28−53.3 (3)
C1—C2—C3—C4−0.3 (6)C32—C27—C28—C29−0.1 (5)
C2—C3—C4—C50.9 (7)P3—C27—C28—C29178.6 (3)
C3—C4—C5—C6−0.5 (7)C27—C28—C29—C30−1.0 (6)
C2—C1—C6—C51.2 (5)C28—C29—C30—C311.5 (7)
P1—C1—C6—C5−171.7 (3)C29—C30—C31—C32−0.9 (7)
C4—C5—C6—C1−0.6 (6)C28—C27—C32—C310.7 (5)
C1—P1—C7—C8−141.9 (3)P3—C27—C32—C31−177.9 (3)
C13—P1—C7—C8−38.5 (3)C30—C31—C32—C27−0.2 (7)
Cu1—P1—C7—C875.5 (3)C27—P3—C33—C34−137.3 (3)
C1—P1—C7—C1245.7 (3)C39—P3—C33—C34113.6 (3)
C13—P1—C7—C12149.0 (3)Cu1—P3—C33—C34−12.0 (3)
Cu1—P1—C7—C12−97.0 (3)C27—P3—C33—C3840.8 (3)
C12—C7—C8—C9−1.2 (6)C39—P3—C33—C38−68.2 (3)
P1—C7—C8—C9−173.8 (4)Cu1—P3—C33—C38166.2 (3)
C7—C8—C9—C100.5 (8)C38—C33—C34—C35−0.5 (6)
C8—C9—C10—C110.9 (8)P3—C33—C34—C35177.7 (3)
C9—C10—C11—C12−1.5 (7)C33—C34—C35—C360.7 (7)
C8—C7—C12—C110.6 (5)C34—C35—C36—C370.1 (8)
P1—C7—C12—C11173.3 (3)C35—C36—C37—C38−1.0 (7)
C10—C11—C12—C70.8 (6)C34—C33—C38—C37−0.4 (6)
C7—P1—C13—C14176.0 (2)P3—C33—C38—C37−178.5 (3)
C1—P1—C13—C14−76.3 (2)C36—C37—C38—C331.2 (7)
Cu1—P1—C13—C1447.8 (2)C27—P3—C39—C39i80.6 (3)
P1—C13—C14—P2−59.6 (3)C33—P3—C39—C39i−174.3 (3)
C15—P2—C14—C13168.9 (2)Cu1—P3—C39—C39i−48.5 (4)
C21—P2—C14—C13−85.9 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···Br10.932.863.760 (4)164.
C32—H32···Br1i0.932.823.666 (4)151.

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2542).

References

  • Albano, V. G., Bellon, P. L. & Ciani, G. (1972). J. Chem. Soc. Dalton Trans. pp. 1938–1943.
  • Berners-Price, S. J., Johnson, R. K., Mirabelli, C. K., Faucette, L. F., McCabe, F. L. & Sadler, P. J. (1987). Inorg. Chem.26, 3383–3387.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777–783.
  • Darensbourg, D. J., Chao, C. C., Reibenspies, J. H. & Bischoff, C. J. (1990). Inorg. Chem.29, 2153–2157.
  • Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 53–63.
  • Eller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem.16, 2454–2462.
  • Goldstein, S., Czapski, G., Cohen, H. & Meyerstein, D. (1992). Inorg. Chem.31, 2439–2444.
  • Leoni, P., Pasquali, M. & Ghilardi, C. A. (1983). J. Chem. Soc. Chem. Commun. pp. 240–241.
  • Mohr, B., Brooks, E. E., Rath, N. & Deutsch, E. (1991). Inorg. Chem.30, 4541–4545.
  • Navon, N., Golub, G., Cohen, H. & Meyerstein, D. (1995). Organometallics, 14, 5670–5676.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography