PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1328–m1329.
Published online 2008 September 27. doi:  10.1107/S1600536808030341
PMCID: PMC2959430

cis-Dichloridobis(1,10-phenanthroline)cobalt(II) dimethyl­formamide solvate

Abstract

In the title complex, [CoCl2(C12H8N2)2]·C3H7NO, which has twofold rotation symmetry, the CoII cation is coordinated by two 1,10-phenanthroline (phen) mol­ecules and two chloride ligands in a distorted octa­hedral geometry. In the crystal structure, a cavity is created by six complex mol­ecules connected by C—H(...)π inter­actions and non-classical C—H(...)Cl hydrogen bonds. The cavities are occupied by the disordered dimethyl­formamide solvent mol­ecule. The C and N atoms of the C—N bond in the solvent mol­ecule also lie on a crystallographic twofold rotation axis; the remaining atoms of the solvent are statistically disordered (ratio 0.5:0.5) about this axis.

Related literature

For general background, see: Forster et al. (2000 [triangle]); Holder et al. (2007 [triangle]); Ma et al. (2002 [triangle]). Matsumoto et al. (2002 [triangle]); Xie et al. (2006 [triangle]). For a related structure, see: Hazell et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1328-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C12H8N2)2]·C3H7NO
  • M r = 563.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1328-efi2.jpg
  • a = 16.345 (3) Å
  • b = 12.342 (2) Å
  • c = 12.342 (2) Å
  • V = 2489.8 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.94 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury70 CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku & Mol­ecular Structure Corporation, 2000 [triangle]) T min = 0.829, T max = 0.829
  • 14711 measured reflections
  • 2204 independent reflections
  • 2168 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.063
  • S = 1.09
  • 2204 reflections
  • 180 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku & Molecular Structure Corporation, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek; 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030341/sj2538sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030341/sj2538Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the initial fund for Doctorates from Hunan University.

supplementary crystallographic information

Comment

MLmXn coordination compounds (L = α,α'-diimine chelate ligands, such as 2,2'-bipyridine, 1,10-phenanthroline, and their derivatives; X = halide or pseudohalide ligands) have been receiving extensive attention due to their importance in crystal engineering and supramolecular chemistry. They also serve as models to aid the understanding of phenomena such as photosensitization and crystallization (Forster et al., 2000; Holder et al., 2007; Ma et al., 2002). In such molecules a variety of weak intermolecular interactions involving the halide anions, aromatic ligands and solvent molecules can stabilise and regulate the supramolecular architecture in different aggregation states (Matsumoto et al., 2002; Xie et al., 2006). Herein, we report the crystal structure of a new cobalt(II) chloride complex with a phenanthroline ligand, Fig 1.

The crystallographic asymmetric unit of (I) consists of one half occuapncy CoII atom that lies on a two-fold rotation axis, one phenanthroline molecule, one Cl- anion, and half a molecule of dimethylformamide. In the complex, the CoII atom is in a distorted octahedral coordination environment provided by four N atoms from two bidentate phen ligands and two terminal Cl- anions. The Co—N and Co—Cl bond lengths (Table 1) are normal, and are comparable to those found in a related octahedral cobalt(II) complex [CoCl2(C12H8N2)2].1.5CH3CN [Hazell et al., 1997].

Interestingly in the crystal structure, a cavity is created by six complex molecules connected by C—H···π interactions and non-classical C—H···Cl hydrogen bonds (Table 2, Fig. 2) which is occupied by the disordered dmf solvate molecule. The solvate lies with the C14 and N3 on a crystallographic 2-fold rotation axis; the remaining atoms of the solvate are statistically disordered about this axis. The calculated void space of the cavity was estimated to be 557.6 Å3 per unit cell, which corresponds to 23.2% of the total volume (2489.8 Å3) (Fig 2) (Spek, 2003).

Experimental

[CoCl2.6(H2O)] (238 mg) was dissolved in a mixture of dimethylformamide (10 ml) and tetrahydrofuran (10 ml) with stirring. A color change from blue to dark blue was observed after the phenanthroline (40 mg) was added to the solution. The mixture was cooled down to room temperature after stirring for 1 h at 90 oC. The resulting mixture was then filtered, and the filtrate was concentrated to ca 13 ml by rotary evaporation and left in a refrigerator at 4 oC. Transparent blue prismatic crystals suitable for X-ray diffraction were produced in a few days (yield 21%). Analysis calculated for C27H23Cl2CoN5O: C 57.57, N 12.43, H 4.12%; found: C 57.72, N 12.56, H 3.97%.

Refinement

The H atoms bonded to C atoms were placed in calculated positions and treated using a riding-model approximation (C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group; C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the 1,10-phenanthroline and aldehyde groups).

Figures

Fig. 1.
The structure of the title compound showing the atom numbering. Thermal ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only one of the disorder components of the dmf molecule is shown. [Symmetry ...
Fig. 2.
Crystal packing of (I) showing the cavity (represented by the pink sphere) created by the C—H···Cl and C—H···π interactions with hydrogen bonds drawn as dashed lines.

Crystal data

[CoCl2(C12H8N2)2]·C3H7NOF(000) = 1156
Mr = 563.33Dx = 1.503 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6370 reflections
a = 16.345 (3) Åθ = 2.1–25.0°
b = 12.342 (2) ŵ = 0.94 mm1
c = 12.342 (2) ÅT = 293 K
V = 2489.8 (8) Å3Block, colorless
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Rigaku Mercury70 CCD diffractometer2204 independent reflections
Radiation source: fine-focus sealed tube2168 reflections with I > 2σ(I)
graphiteRint = 0.017
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (CrystalClear; Rigaku & Molecular Structure Corporation, 2000)h = −17→19
Tmin = 0.829, Tmax = 0.829k = −14→14
14711 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0288P)2 + 1.9948P] where P = (Fo2 + 2Fc2)/3
2204 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.50000.71666 (2)0.25000.01272 (10)
Cl10.41390 (2)0.59903 (3)0.14376 (3)0.01956 (11)
N20.59089 (8)0.72168 (10)0.12398 (11)0.0151 (3)
C110.65206 (9)0.79462 (12)0.14122 (12)0.0141 (3)
N10.57879 (8)0.84851 (11)0.29957 (11)0.0162 (3)
C70.72069 (9)0.80426 (13)0.07300 (13)0.0171 (3)
C120.64445 (9)0.86417 (12)0.23421 (13)0.0148 (3)
C30.69394 (10)1.00860 (14)0.34665 (14)0.0228 (4)
H3A0.73171.06260.36280.027*
C100.59726 (10)0.65659 (13)0.03895 (13)0.0187 (3)
H10A0.55580.60650.02640.022*
C10.57135 (10)0.91093 (14)0.38597 (14)0.0215 (4)
H1A0.52640.90070.43110.026*
C60.78081 (10)0.88565 (14)0.09568 (14)0.0209 (4)
H6A0.82610.89240.05070.025*
C50.77263 (10)0.95285 (14)0.18162 (14)0.0218 (4)
H5A0.81201.00590.19400.026*
C20.62797 (10)0.99184 (15)0.41280 (15)0.0253 (4)
H2A0.62081.03360.47480.030*
C80.72538 (11)0.73320 (13)−0.01602 (14)0.0210 (4)
H8A0.76990.7360−0.06290.025*
C90.66376 (10)0.65987 (14)−0.03293 (14)0.0222 (4)
H9A0.66600.6126−0.09160.027*
C40.70425 (10)0.94361 (13)0.25393 (13)0.0176 (3)
O10.5517 (2)0.0842 (2)0.1510 (3)0.0433 (7)0.50
N30.50000.2344 (2)0.25000.0453 (7)
C130.5478 (6)0.1828 (7)0.1772 (8)0.048 (3)0.50
H13A0.58400.22760.14000.057*0.50
C140.50000.3523 (3)0.25000.0553 (10)
H14A0.55510.37830.24270.083*0.50
H14B0.47720.37830.31680.083*0.50
H14C0.46770.37830.19040.083*0.50
C150.5421 (7)0.1760 (10)0.1657 (9)0.067 (4)0.50
H15A0.53750.21510.09870.100*0.50
H15B0.51800.10550.15750.100*0.50
H15C0.59880.16850.18460.100*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01000 (16)0.01385 (16)0.01430 (17)0.000−0.00028 (11)0.000
Cl10.0170 (2)0.0213 (2)0.0203 (2)−0.00516 (15)−0.00274 (15)−0.00162 (16)
N20.0134 (6)0.0161 (6)0.0159 (7)−0.0002 (5)−0.0015 (5)0.0012 (5)
C110.0124 (7)0.0146 (7)0.0152 (8)0.0011 (6)−0.0018 (6)0.0033 (6)
N10.0131 (6)0.0174 (7)0.0181 (7)0.0004 (5)−0.0004 (5)−0.0016 (6)
C70.0148 (8)0.0187 (8)0.0177 (8)0.0012 (6)0.0003 (6)0.0036 (6)
C120.0130 (7)0.0147 (7)0.0168 (8)0.0012 (6)−0.0027 (6)0.0023 (6)
C30.0203 (8)0.0208 (8)0.0272 (9)−0.0047 (7)−0.0045 (7)−0.0045 (7)
C100.0185 (8)0.0180 (8)0.0195 (8)−0.0006 (6)−0.0012 (7)−0.0031 (7)
C10.0176 (8)0.0252 (9)0.0218 (9)0.0001 (7)0.0035 (7)−0.0054 (7)
C60.0156 (8)0.0263 (8)0.0208 (8)−0.0033 (7)0.0022 (7)0.0047 (7)
C50.0181 (8)0.0236 (8)0.0238 (9)−0.0078 (7)−0.0018 (7)0.0036 (7)
C20.0227 (9)0.0270 (9)0.0262 (9)−0.0020 (7)0.0003 (7)−0.0109 (8)
C80.0185 (8)0.0249 (8)0.0197 (8)0.0025 (7)0.0055 (7)0.0018 (7)
C90.0240 (9)0.0224 (8)0.0203 (8)0.0012 (7)0.0022 (7)−0.0048 (7)
C40.0155 (8)0.0179 (8)0.0194 (8)−0.0003 (7)−0.0034 (6)0.0015 (6)
O10.0492 (19)0.0294 (16)0.0512 (19)0.0003 (14)−0.0046 (15)−0.0048 (14)
N30.0390 (15)0.0223 (12)0.075 (2)0.000−0.0214 (14)0.000
C130.065 (7)0.018 (4)0.060 (5)−0.007 (4)0.030 (5)0.001 (3)
C140.049 (2)0.0259 (16)0.090 (3)0.000−0.0091 (19)0.000
C150.047 (5)0.057 (7)0.095 (7)0.001 (5)−0.041 (5)−0.028 (5)

Geometric parameters (Å, °)

Co1—N22.1517 (13)C6—C51.353 (2)
Co1—N2i2.1517 (13)C6—H6A0.9300
Co1—N12.1636 (13)C5—C41.435 (2)
Co1—N1i2.1636 (13)C5—H5A0.9300
Co1—Cl12.4099 (5)C2—H2A0.9300
Co1—Cl1i2.4099 (5)C8—C91.370 (2)
N2—C101.326 (2)C8—H8A0.9300
N2—C111.362 (2)C9—H9A0.9300
C11—C71.408 (2)O1—C131.260 (9)
C11—C121.439 (2)N3—C131.351 (7)
N1—C11.321 (2)N3—C151.441 (8)
N1—C121.356 (2)N3—C141.456 (4)
C7—C81.408 (2)N3—C13i1.351 (7)
C7—C61.433 (2)N3—C15i1.441 (8)
C12—C41.406 (2)C13—H13A0.9300
C3—C21.368 (2)C14—H14A0.9600
C3—C41.408 (2)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C10—C91.404 (2)C15—H15A0.9600
C10—H10A0.9300C15—H15B0.9600
C1—C21.401 (2)C15—H15C0.9600
C1—H1A0.9300
N2—Co1—N2i176.70 (7)C5—C6—C7121.01 (15)
N2—Co1—N176.81 (5)C5—C6—H6A119.5
N2i—Co1—N1100.65 (5)C7—C6—H6A119.5
N2—Co1—N1i100.65 (5)C6—C5—C4121.05 (15)
N2i—Co1—N1i76.81 (5)C6—C5—H5A119.5
N1—Co1—N1i82.44 (7)C4—C5—H5A119.5
N2—Co1—Cl191.56 (4)C3—C2—C1119.15 (16)
N2i—Co1—Cl190.43 (4)C3—C2—H2A120.4
N1—Co1—Cl1162.67 (4)C1—C2—H2A120.4
N1i—Co1—Cl187.23 (4)C9—C8—C7119.36 (15)
N2—Co1—Cl1i90.43 (4)C9—C8—H8A120.3
N2i—Co1—Cl1i91.56 (4)C7—C8—H8A120.3
N1—Co1—Cl1i87.23 (4)C8—C9—C10119.48 (15)
N1i—Co1—Cl1i162.67 (4)C8—C9—H9A120.3
Cl1—Co1—Cl1i105.91 (2)C10—C9—H9A120.3
C10—N2—C11117.80 (14)C12—C4—C3117.06 (15)
C10—N2—Co1127.52 (11)C12—C4—C5119.30 (15)
C11—N2—Co1114.39 (10)C3—C4—C5123.62 (15)
N2—C11—C7123.19 (14)C13i—N3—C13123.8 (8)
N2—C11—C12117.10 (14)C13—N3—C15i121.4 (4)
C7—C11—C12119.71 (14)C13i—N3—C15121.4 (4)
C1—N1—C12118.02 (14)C15i—N3—C15120.0 (11)
C1—N1—Co1127.74 (11)C13—N3—C14118.1 (4)
C12—N1—Co1114.20 (10)C15—N3—C14120.0 (6)
C11—C7—C8117.23 (15)O1—C13—N3130.9 (6)
C11—C7—C6119.27 (15)O1—C13—H13A114.6
C8—C7—C6123.49 (15)N3—C13—H13A114.6
N1—C12—C4123.13 (14)N3—C14—H14A109.5
N1—C12—C11117.25 (14)N3—C14—H14B109.5
C4—C12—C11119.62 (14)H14A—C14—H14B109.5
C2—C3—C4119.56 (16)N3—C14—H14C109.5
C2—C3—H3A120.2H14A—C14—H14C109.5
C4—C3—H3A120.2H14B—C14—H14C109.5
N2—C10—C9122.94 (15)N3—C15—H15A109.5
N2—C10—H10A118.5N3—C15—H15B109.5
C9—C10—H10A118.5H15A—C15—H15B109.5
N1—C1—C2123.06 (16)N3—C15—H15C109.5
N1—C1—H1A118.5H15A—C15—H15C109.5
C2—C1—H1A118.5H15B—C15—H15C109.5
N1—Co1—N2—C10178.15 (14)N2—C11—C12—N12.6 (2)
N1i—Co1—N2—C10−102.31 (13)C7—C11—C12—N1−177.44 (14)
Cl1—Co1—N2—C10−14.83 (13)N2—C11—C12—C4−177.75 (14)
Cl1i—Co1—N2—C1091.10 (13)C7—C11—C12—C42.2 (2)
N1—Co1—N2—C114.54 (10)C11—N2—C10—C90.1 (2)
N1i—Co1—N2—C1184.08 (11)Co1—N2—C10—C9−173.37 (12)
Cl1—Co1—N2—C11171.56 (10)C12—N1—C1—C2−0.1 (2)
Cl1i—Co1—N2—C11−82.51 (10)Co1—N1—C1—C2177.45 (13)
C10—N2—C11—C70.5 (2)C11—C7—C6—C50.2 (2)
Co1—N2—C11—C7174.73 (12)C8—C7—C6—C5179.06 (16)
C10—N2—C11—C12−179.63 (14)C7—C6—C5—C41.1 (3)
Co1—N2—C11—C12−5.35 (17)C4—C3—C2—C1−0.8 (3)
N2—Co1—N1—C1179.24 (15)N1—C1—C2—C30.6 (3)
N2i—Co1—N1—C11.40 (15)C11—C7—C8—C90.7 (2)
N1i—Co1—N1—C176.37 (14)C6—C7—C8—C9−178.19 (16)
Cl1—Co1—N1—C1130.31 (14)C7—C8—C9—C10−0.2 (2)
Cl1i—Co1—N1—C1−89.67 (14)N2—C10—C9—C8−0.2 (3)
N2—Co1—N1—C12−3.15 (10)N1—C12—C4—C30.1 (2)
N2i—Co1—N1—C12179.00 (10)C11—C12—C4—C3−179.44 (14)
N1i—Co1—N1—C12−106.02 (12)N1—C12—C4—C5178.67 (15)
Cl1—Co1—N1—C12−52.08 (19)C11—C12—C4—C5−0.9 (2)
Cl1i—Co1—N1—C1287.94 (10)C2—C3—C4—C120.4 (2)
N2—C11—C7—C8−0.8 (2)C2—C3—C4—C5−178.04 (17)
C12—C11—C7—C8179.25 (14)C6—C5—C4—C12−0.7 (2)
N2—C11—C7—C6178.10 (14)C6—C5—C4—C3177.71 (16)
C12—C11—C7—C6−1.8 (2)C13i—N3—C13—O19.9 (10)
C1—N1—C12—C4−0.3 (2)C15i—N3—C13—O118 (2)
Co1—N1—C12—C4−178.17 (12)C15—N3—C13—O1−62 (7)
C1—N1—C12—C11179.28 (14)C14—N3—C13—O1−170.1 (10)
Co1—N1—C12—C111.42 (17)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl10.932.743.3408 (17)124.
C6—H6A···Cl1ii0.932.803.6743 (18)158.
C5—H5A···Cl1iii0.932.853.6375 (17)144.
C2—H2A···Cg1iv0.932.993.768 (2)142
C8—H8A···Cg2v0.932.903.608 (2)134

Symmetry codes: (ii) x+1/2, −y+3/2, −z; (iii) x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z−1/2; (v) −x+3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2538).

References

  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Forster, R. J., Figgemeier, E., Lees, A. C., Hjelm, J. & Vos, J. G. (2000). Langmuir, 16, 7867–7870.
  • Hazell, A., McGinley, J. & McKenzie, C. J. (1997). Acta Cryst. C53, 723–725.
  • Holder, A. A., Zigler, D. F., Tarrago-Trani, M. T., Storrie, B. & Brewer, K. J. (2007). Inorg. Chem.46, 4760–4762. [PubMed]
  • Ma, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307–1314.
  • Matsumoto, A., Tanaka, T., Tsubouchi, T., Tashiro, K., Saragai, S. & Nakamoto, S. (2002). J. Am. Chem. Soc.124, 8891–8902. [PubMed]
  • Rigaku & Molecular Structure Corporation (2000). CrystalClear Rigaku Corporation, Tokyo, Japan, and MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Xie, Y.-B., Ma, Z.-C. & Wang, D. (2006). J. Mol. Struct.784, 93–97.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography