PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1914–o1915.
Published online 2008 September 13. doi:  10.1107/S1600536808027748
PMCID: PMC2959426

1-[2-(4-Bromo­benz­yloxy)-2-phenyl­ethyl]-1H-1,2,4-triazole

Abstract

In the mol­ecule of the title compound, C17H16BrN3O, the triazole ring is oriented at dihedral angles of 6.14 (9)° and 82.08 (9)°, respectively, with respect to the phenyl and bromo­benzene rings. The dihedral angle between the bromo­benzene and phenyl rings is 87.28 (7)°. The intra­molecular C—H(...)O hydrogen bond results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 0.13 (6)° with respect to the bromo­benzene ring. There is an inter­molecular C—H(...)π contact between a methyl­ene group and the bromo­benzene ring.

Related literature

For general backgroud, see: Paulvannan et al. (2001 [triangle]); Godefroi et al. (1969 [triangle]); Özel Güven et al. (2007a [triangle],b [triangle]); Wahbi et al. (1995 [triangle]). For related literature, see: Peeters et al. (1979 [triangle]); Freer et al. (1986 [triangle]); Özel Güven et al. (2008a [triangle],b [triangle],c [triangle],d [triangle]); Özel Güven, Tahtacı et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1914-scheme1.jpg

Experimental

Crystal data

  • C17H16BrN3O
  • M r = 358.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1914-efi1.jpg
  • a = 10.2070 (2) Å
  • b = 13.7948 (3) Å
  • c = 11.4007 (2) Å
  • β = 100.317 (1)°
  • V = 1579.31 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.61 mm−1
  • T = 120 (2) K
  • 0.38 × 0.30 × 0.20 mm

Data collection

  • Bruker–Nonius Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.400, T max = 0.590
  • 18914 measured reflections
  • 3617 independent reflections
  • 2901 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.082
  • S = 1.05
  • 3617 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027748/xu2450sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027748/xu2450Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund (grant No. 2004–13-02–16).

supplementary crystallographic information

Comment

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Similar structures possessing imidazole ring such as miconazole, econazole and sulconazole have been developed for clinical uses as antifungal agents (Godefroi et al., 1969) and also similar structures possessing benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). Antifungal activity of aromatic ethers possessing 1,2,4-triazole ring have been reported (Wahbi et al., 1995). The crystal structures of miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) and similar structures possessing benzimidazole ring (Özel Güven et al., 2008a,b,c,d) have been reported, previously, and now we report herein the crystal structure of the title 1,2,4-triazole ring substituted ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the phenyl and bromobenzene rings at dihedral angles of 6.14 (9)° and 82.08 (9)°, respectively. Atoms C3, C4 and C11 are 0.114 (2), -0.076 (2) and 0.015 (2) Å away from the ring planes of the corresponding triazole, phenyl and bromobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The bromobenzene ring is oriented with respect to the phenyl ring at a dihedral angle of 87.28 (7)°. The intramolecular C—H···O hydrogen bond results in the formation of a planar five-membered ring (O/H13/C11—C13), which is oriented with respect to bromobenzene ring at a dihedral angle of 0.13 (6)°. So, they are coplanar.

In the crystal structure, the molecules are elongated along [010], and stacked along the c axis. There is a C—H···π contact (Table 1) between the methylene group and the bromobenzene ring.

Experimental

The title compound was synthesized by the reaction of 1-phenyl-2-(1H-1,2,4 -triazol-1-yl)ethanol (Özel Güven, Tahtacı et al., 2008) with NaH and appropriate benzyl halide. To the solution of alcohol (300 mg, 1.586 mmol) in DMF (4 ml) was added NaH (63 mg, 1.586 mmol) in small fractions. The appropriate benzyl halide (396 mg, 1.586 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from ethyl acetate (yield; 368 mg, 65%).

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H16BrN3OF(000) = 728
Mr = 358.24Dx = 1.507 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3224 reflections
a = 10.2070 (2) Åθ = 2.9–27.5°
b = 13.7948 (3) ŵ = 2.61 mm1
c = 11.4007 (2) ÅT = 120 K
β = 100.317 (1)°Block, colorless
V = 1579.31 (5) Å30.38 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker–Nonius Kappa CCD diffractometer3617 independent reflections
Radiation source: fine-focus sealed tube2901 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
[var phi] & ω scansh = −13→12
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −17→17
Tmin = 0.400, Tmax = 0.590l = −14→14
18914 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0282P)2 + 1.0904P] where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.01308 (3)0.204749 (18)0.24099 (2)0.03377 (10)
O0.23831 (15)0.48903 (11)0.72395 (13)0.0219 (3)
N10.43625 (18)0.62535 (13)0.70844 (15)0.0209 (4)
N20.4116 (2)0.71851 (14)0.67091 (18)0.0262 (4)
N30.4832 (2)0.62873 (15)0.52812 (17)0.0264 (4)
C10.4421 (2)0.71587 (17)0.5630 (2)0.0260 (5)
H10.43570.77030.51410.031*
C20.4777 (2)0.57391 (17)0.62277 (19)0.0250 (5)
H20.49980.50850.62870.030*
C30.4052 (2)0.59254 (17)0.82170 (18)0.0230 (5)
H3A0.42490.64410.88000.028*
H3B0.46150.53770.85000.028*
C40.2599 (2)0.56308 (16)0.81142 (18)0.0209 (5)
H40.20280.61870.78390.025*
C50.2348 (2)0.53134 (16)0.93291 (18)0.0203 (5)
C60.2718 (2)0.43995 (17)0.9773 (2)0.0264 (5)
H60.30900.39590.93080.032*
C70.2536 (2)0.41385 (19)1.0911 (2)0.0292 (5)
H70.27800.35231.12020.035*
C80.1994 (3)0.47886 (19)1.1609 (2)0.0306 (6)
H80.18760.46141.23710.037*
C90.1627 (3)0.57037 (19)1.1170 (2)0.0323 (6)
H90.12690.61471.16400.039*
C100.1791 (2)0.59612 (18)1.0031 (2)0.0263 (5)
H100.15270.65720.97340.032*
C110.1027 (2)0.45894 (17)0.69514 (19)0.0220 (5)
H11A0.04520.51530.68060.026*
H11B0.07880.42300.76130.026*
C120.0843 (2)0.39583 (16)0.58547 (18)0.0199 (5)
C130.1877 (2)0.37627 (17)0.52494 (19)0.0224 (5)
H130.27180.40210.55250.027*
C140.1669 (2)0.31831 (17)0.42329 (19)0.0240 (5)
H140.23670.30500.38330.029*
C150.0416 (2)0.28084 (16)0.38240 (19)0.0242 (5)
C16−0.0634 (2)0.30004 (17)0.4409 (2)0.0247 (5)
H16−0.14750.27480.41250.030*
C17−0.0413 (2)0.35727 (17)0.54222 (19)0.0225 (5)
H17−0.11140.37020.58200.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.04619 (18)0.02724 (15)0.02419 (14)−0.00004 (12)−0.00363 (11)−0.00854 (10)
O0.0210 (8)0.0264 (8)0.0189 (7)−0.0031 (7)0.0056 (6)−0.0072 (6)
N10.0236 (10)0.0210 (10)0.0190 (9)−0.0032 (8)0.0061 (8)0.0008 (8)
N20.0307 (11)0.0202 (10)0.0295 (10)−0.0027 (8)0.0105 (9)0.0003 (8)
N30.0287 (11)0.0280 (11)0.0247 (10)0.0014 (9)0.0107 (8)0.0027 (8)
C10.0263 (12)0.0263 (13)0.0274 (12)0.0006 (10)0.0102 (10)0.0078 (10)
C20.0322 (13)0.0219 (12)0.0222 (11)0.0022 (10)0.0082 (10)0.0008 (9)
C30.0273 (12)0.0274 (12)0.0143 (10)−0.0054 (10)0.0040 (9)−0.0010 (9)
C40.0250 (12)0.0220 (11)0.0165 (10)−0.0026 (9)0.0059 (9)−0.0032 (9)
C50.0196 (11)0.0245 (12)0.0166 (10)−0.0050 (9)0.0026 (9)−0.0037 (9)
C60.0304 (13)0.0241 (12)0.0247 (11)0.0010 (10)0.0047 (10)−0.0028 (10)
C70.0306 (13)0.0290 (13)0.0261 (12)−0.0018 (11)0.0002 (10)0.0080 (10)
C80.0322 (14)0.0404 (15)0.0207 (11)−0.0049 (12)0.0084 (10)0.0043 (11)
C90.0379 (15)0.0354 (14)0.0270 (12)0.0019 (12)0.0150 (11)−0.0017 (11)
C100.0315 (13)0.0244 (12)0.0247 (11)−0.0008 (10)0.0097 (10)0.0010 (10)
C110.0217 (11)0.0250 (12)0.0197 (11)−0.0049 (9)0.0047 (9)−0.0017 (9)
C120.0251 (12)0.0189 (11)0.0156 (10)0.0004 (9)0.0033 (9)0.0027 (8)
C130.0232 (12)0.0238 (12)0.0196 (10)−0.0020 (9)0.0018 (9)−0.0013 (9)
C140.0276 (12)0.0247 (12)0.0201 (11)0.0017 (10)0.0053 (10)0.0003 (9)
C150.0345 (13)0.0185 (11)0.0176 (10)−0.0005 (10)−0.0009 (10)0.0012 (9)
C160.0244 (12)0.0233 (12)0.0236 (11)−0.0056 (10)−0.0034 (9)0.0044 (10)
C170.0217 (12)0.0233 (12)0.0229 (11)0.0000 (9)0.0048 (9)0.0042 (9)

Geometric parameters (Å, °)

Br—C151.902 (2)C1—H10.9300
O—C41.417 (3)C2—H20.9300
O—C111.426 (3)C3—C41.523 (3)
N1—C21.336 (3)C3—H3A0.9700
N1—N21.363 (3)C3—H3B0.9700
N1—C31.456 (3)C4—C51.517 (3)
N2—C11.323 (3)C4—H40.9800
N3—C21.327 (3)C5—C101.387 (3)
C12—C131.387 (3)C6—C51.386 (3)
C12—C111.507 (3)C6—C71.390 (3)
C13—C141.393 (3)C6—H60.9300
C13—H130.9300C7—H70.9300
C14—H140.9300C8—C71.379 (4)
C15—C141.381 (3)C8—C91.385 (4)
C15—C161.385 (3)C8—H80.9300
C16—C171.384 (3)C9—H90.9300
C16—H160.9300C10—C91.385 (3)
C17—C121.394 (3)C10—H100.9300
C17—H170.9300C11—H11A0.9700
C1—N31.356 (3)C11—H11B0.9700
C4—O—C11113.20 (16)C7—C8—C9119.6 (2)
C2—N1—N2109.63 (18)C7—C8—H8120.2
C2—N1—C3129.13 (19)C9—C8—H8120.2
N2—N1—C3120.95 (18)C8—C9—C10120.2 (2)
C1—N2—N1101.85 (19)C8—C9—H9119.9
C2—N3—C1101.93 (19)C10—C9—H9119.9
N2—C1—N3115.7 (2)C9—C10—C5120.4 (2)
N2—C1—H1122.2C9—C10—H10119.8
N3—C1—H1122.2C5—C10—H10119.8
N3—C2—N1110.9 (2)O—C11—C12109.32 (18)
N3—C2—H2124.5O—C11—H11A109.8
N1—C2—H2124.5C12—C11—H11A109.8
N1—C3—C4112.24 (18)O—C11—H11B109.8
N1—C3—H3A109.2C12—C11—H11B109.8
C4—C3—H3A109.2H11A—C11—H11B108.3
N1—C3—H3B109.2C13—C12—C17118.9 (2)
C4—C3—H3B109.2C13—C12—C11122.1 (2)
H3A—C3—H3B107.9C17—C12—C11118.9 (2)
O—C4—C5113.84 (18)C12—C13—C14120.6 (2)
O—C4—C3105.84 (17)C12—C13—H13119.7
C5—C4—C3109.14 (18)C14—C13—H13119.7
O—C4—H4109.3C15—C14—C13119.3 (2)
C5—C4—H4109.3C15—C14—H14120.3
C3—C4—H4109.3C13—C14—H14120.3
C6—C5—C10119.3 (2)C14—C15—C16121.0 (2)
C6—C5—C4121.1 (2)C14—C15—Br118.98 (18)
C10—C5—C4119.6 (2)C16—C15—Br119.97 (18)
C5—C6—C7120.2 (2)C17—C16—C15119.1 (2)
C5—C6—H6119.9C17—C16—H16120.4
C7—C6—H6119.9C15—C16—H16120.4
C8—C7—C6120.3 (2)C16—C17—C12121.0 (2)
C8—C7—H7119.8C16—C17—H17119.5
C6—C7—H7119.8C12—C17—H17119.5
C11—O—C4—C565.5 (2)C4—C5—C10—C9−176.2 (2)
C11—O—C4—C3−174.60 (17)C7—C6—C5—C10−0.2 (3)
C4—O—C11—C12168.62 (17)C7—C6—C5—C4177.1 (2)
C2—N1—N2—C1−0.5 (2)C5—C6—C7—C8−0.5 (4)
C3—N1—N2—C1−174.8 (2)C9—C8—C7—C60.3 (4)
N2—N1—C2—N30.4 (3)C7—C8—C9—C100.6 (4)
C3—N1—C2—N3174.1 (2)C5—C10—C9—C8−1.3 (4)
N2—N1—C3—C483.5 (2)C13—C12—C11—O−1.9 (3)
C2—N1—C3—C4−89.6 (3)C17—C12—C11—O179.24 (19)
N1—N2—C1—N30.4 (3)C11—C12—C13—C14−179.4 (2)
C1—N3—C2—N1−0.1 (3)C17—C12—C13—C14−0.6 (3)
N2—C1—N3—C2−0.2 (3)C12—C13—C14—C150.5 (3)
N1—C3—C4—O58.0 (2)Br—C15—C14—C13178.28 (17)
N1—C3—C4—C5−179.15 (18)C16—C15—C14—C130.0 (3)
O—C4—C5—C638.9 (3)Br—C15—C16—C17−178.62 (17)
O—C4—C5—C10−143.9 (2)C14—C15—C16—C17−0.4 (3)
C3—C4—C5—C6−79.1 (3)C15—C16—C17—C120.2 (3)
C3—C4—C5—C1098.1 (2)C16—C17—C12—C11179.1 (2)
C6—C5—C10—C91.1 (4)C16—C17—C12—C130.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···O0.932.372.723 (3)102
C11—H11A···Cg3i0.972.843.687 (2)147

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2450).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  • Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem.12, 784–791. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heteroat. Chem.44, 731–734.
  • Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254. [PMC free article] [PubMed]
  • Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Bull. Soc. Chim. Belg.88, 265–272.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem.30, 955–962.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography