PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1284–m1285.
Published online 2008 September 20. doi:  10.1107/S1600536808029061
PMCID: PMC2959425

Diaqua­(2,2′-bipyridine-5,5′-dicarboxyl­ato-κ2 N,N′)(ethyl­enediamine-κ2 N,N′)copper(II) 2.5-hydrate

Abstract

In the mol­ecule of the title compound, [Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O, the CuII atom is six-coordinated in a distorted octa­hedral configuration by two N atoms from a 2,2′-bipyridine-5,5′-dicarboxyl­ate anion, two N atoms from ethyl­enediamine and two O atoms from two water mol­ecules. There are also two and a half water mol­ecules in the asymmetric unit. The planar five-membered ring is nearly coplanar with the adjacent pyridine rings, while the other five-membered ring adopts a twisted conformation, probably due to hydrogen bonding. In the crystal structure, intra- and inter­molecular N—H(...)O and O—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For complexes involving 2,2′-bipyridine-5,5′-dicarboxyl­ate anions, see: Min et al. (2002 [triangle]); Geary et al. (2003 [triangle]); Hafizovic et al. (2006 [triangle]); Schoknechta & Kempe (2004 [triangle]); Matthews et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1284-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2O
  • M r = 446.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1284-efi1.jpg
  • a = 31.730 (6) Å
  • b = 7.2481 (14) Å
  • c = 18.421 (4) Å
  • β = 120.05 (3)°
  • V = 3667.1 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.25 mm−1
  • T = 298 (2) K
  • 0.50 × 0.18 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.770, T max = 0.923
  • 13747 measured reflections
  • 4887 independent reflections
  • 4221 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.120
  • S = 1.10
  • 4887 reflections
  • 301 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.71 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029061/hk2516sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029061/hk2516Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

2,2'-Bipyridine-5,5'-dicarboxylic acid (BPDCH2) is a good bridging ligand, and numerous complexes with BPDCH2 anions have been prepared, such as that of cobalt (Min et al., 2002), platinum (Geary et al., 2003; Hafizovic et al., 2006), neodyminum (Schoknechta & Kempe, 2004), ruthenium and rhodium (Matthews et al., 2004) complexes. For further investigation of 2,2'-bipyridine-5,5'-dicarboxylic acid, we synthesized the title compound and report herein its crystal structure.

In the title compound, (Fig. 1), the CuII atom is six-coordinated in a distorted octahedral configuration by two N atoms from 2,2'-bipyridine-5,5'-dicarboxylate anion, two N atoms from ethylenediamine and two O atoms from two water molecules (Table 1). There are also two and a half water molecules in the asymmetric unit. Rings A (N1/C1/C2/C4–C6), B (N2/C7–C10/C12) and C (Cu1/N1/N2/C6/C7) are, of course, planar, and the dihedral angles between them are A/B = 1.43 (3)°, A/C = 2.09 (3)° and B/C = 2.45 (3)°. So, they are nearly coplanar, while ring D (Cu1/N3/N4/C13/C14) adopts twisted conformation, probably due to the hydrogen bondings.

In the crystal structure, intra- and intermolecular N—H···O and O—H···O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, ethylenediamine (0.15 g, 2.50 mmol) was added to a suspension of 2,2'-bipyridine-5,5'-dicarboxylic acid (0.21 g, 0.83 mmol) in water (10 ml) and the resulting colorless solution was added to CuCl2.2H2O (0.14 g, 0.83 mmol) in water (10 ml). The resulting blue solution was stirred at 323 K for 15 min, and then was left to evaporate slowly at room temperature. After one week, blue plate crystals of the title compound were isolated (yield; 0.26 g, 70.01%, m.p. 488 K).

Refinement

H3A, H3B, H4B, H4C (for NH2) and H5B, H5C, H6A, H6B, H7A, H7B, H8B, H9B, H9C (for H2O) atoms were located in difference syntheses and refined isotropically [N—H = 0.85 (4)–0.89 (4) Å and Uiso(H) = 0.035 (8)–0.043 (9) Å2; O—H = 0.72 (5)–0.97 (6) Å and Uiso(H) = 0.041 (10)–0.11 (2) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C12H6N2O4)(C2H8N2)(H2O)2]·2.5H2OF(000) = 1856
Mr = 446.92Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1976 reflections
a = 31.730 (6) Åθ = 2.2–29.3°
b = 7.2481 (14) ŵ = 1.25 mm1
c = 18.421 (4) ÅT = 298 K
β = 120.05 (3)°Plate, blue
V = 3667.1 (17) Å30.50 × 0.18 × 0.07 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer4887 independent reflections
Radiation source: fine-focus sealed tube4221 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 29.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −43→43
Tmin = 0.770, Tmax = 0.923k = −9→9
13747 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0582P)2 + 5.7488P] where P = (Fo2 + 2Fc2)/3
4887 reflections(Δ/σ)max = 0.015
301 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.129145 (10)0.87872 (5)0.482858 (17)0.02876 (10)
O10.28103 (9)1.1389 (6)0.78353 (15)0.0769 (10)
O20.33829 (8)1.2562 (4)0.76199 (13)0.0501 (5)
O30.09405 (8)0.6749 (3)0.10781 (12)0.0447 (5)
O40.05397 (7)0.5529 (3)0.16672 (12)0.0410 (4)
O50.10527 (11)1.2087 (4)0.42720 (19)0.0570 (6)
H5B0.0955 (18)1.190 (7)0.375 (4)0.078 (15)*
H5C0.0838 (19)1.250 (8)0.424 (3)0.081 (18)*
O60.15861 (10)0.5703 (4)0.55005 (19)0.0513 (6)
H6A0.1748 (14)0.577 (5)0.596 (3)0.041 (10)*
H6B0.133 (2)0.484 (9)0.535 (4)0.101 (19)*
O70.41911 (13)1.2811 (5)0.74176 (19)0.0621 (7)
H7A0.3946 (18)1.303 (7)0.744 (3)0.062 (13)*
H7B0.434 (2)1.192 (10)0.764 (4)0.11 (2)*
O80.00000.9968 (6)0.25000.0568 (9)
H8B0.0210 (17)1.050 (7)0.252 (4)0.066 (15)*
O90.03530 (9)0.5945 (4)−0.05647 (15)0.0511 (6)
H9B0.0049 (17)0.569 (6)−0.080 (3)0.063 (12)*
H9C0.056 (2)0.608 (7)0.004 (4)0.097 (17)*
N10.19871 (7)0.9679 (3)0.53881 (12)0.0270 (4)
N20.14333 (7)0.8272 (3)0.38928 (12)0.0252 (4)
N30.11694 (8)0.9366 (3)0.57706 (13)0.0274 (4)
H3A0.1385 (13)0.896 (5)0.624 (2)0.043 (9)*
H3B0.1155 (12)1.055 (5)0.581 (2)0.035 (8)*
N40.05847 (7)0.8043 (3)0.41939 (14)0.0300 (4)
H4B0.0422 (13)0.848 (5)0.369 (2)0.037 (8)*
H4C0.0557 (12)0.682 (5)0.418 (2)0.037 (8)*
C10.22492 (9)1.0341 (4)0.61691 (15)0.0331 (5)
H10.21111.03360.65110.040*
C20.27180 (8)1.1035 (3)0.64927 (15)0.0298 (5)
C30.29927 (10)1.1729 (4)0.73932 (16)0.0384 (6)
C40.29229 (8)1.0998 (3)0.59865 (15)0.0290 (5)
H4A0.32351.14570.61830.035*
C50.26621 (8)1.0276 (3)0.51827 (14)0.0271 (4)
H5A0.28001.02200.48410.033*
C60.21916 (8)0.9637 (3)0.48967 (13)0.0226 (4)
C70.18787 (8)0.8846 (3)0.40512 (13)0.0223 (4)
C80.20220 (8)0.8669 (3)0.34572 (14)0.0279 (4)
H8A0.23280.90740.35730.033*
C90.17036 (9)0.7882 (3)0.26864 (14)0.0284 (5)
H9A0.17950.77590.22810.034*
C100.12496 (8)0.7278 (3)0.25224 (14)0.0257 (4)
C110.08798 (9)0.6439 (3)0.16880 (14)0.0293 (5)
C120.11346 (8)0.7489 (4)0.31536 (14)0.0287 (5)
H120.08340.70630.30560.034*
C130.06969 (9)0.8537 (4)0.55719 (16)0.0340 (5)
H13A0.05710.91360.58950.041*
H13B0.07380.72340.57110.041*
C140.03498 (9)0.8794 (4)0.46480 (16)0.0332 (5)
H14A0.00470.81480.44820.040*
H14B0.02781.00930.45200.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02016 (14)0.04566 (19)0.01986 (14)−0.00232 (11)0.00958 (11)−0.00645 (12)
O10.0448 (13)0.154 (3)0.0339 (11)−0.0239 (16)0.0215 (10)−0.0362 (16)
O20.0412 (11)0.0628 (14)0.0320 (10)−0.0159 (10)0.0077 (9)−0.0168 (10)
O30.0551 (12)0.0527 (12)0.0221 (8)−0.0170 (10)0.0163 (8)−0.0079 (8)
O40.0333 (9)0.0507 (11)0.0298 (9)−0.0135 (8)0.0090 (8)−0.0066 (8)
O50.0548 (15)0.0671 (17)0.0513 (15)0.0147 (13)0.0281 (13)0.0149 (13)
O60.0509 (14)0.0504 (13)0.0545 (15)0.0021 (11)0.0278 (13)0.0043 (12)
O70.0718 (19)0.0669 (18)0.0573 (16)0.0017 (15)0.0396 (15)0.0151 (14)
O80.054 (2)0.057 (2)0.0453 (19)0.0000.0144 (18)0.000
O90.0465 (12)0.0693 (16)0.0318 (10)−0.0222 (11)0.0153 (9)−0.0088 (10)
N10.0205 (8)0.0369 (10)0.0204 (8)−0.0018 (7)0.0079 (7)−0.0056 (8)
N20.0213 (8)0.0325 (10)0.0206 (8)−0.0014 (7)0.0096 (7)−0.0041 (7)
N30.0262 (9)0.0355 (11)0.0206 (9)0.0039 (8)0.0118 (8)0.0020 (8)
N40.0237 (9)0.0398 (12)0.0253 (9)−0.0018 (8)0.0115 (8)−0.0014 (9)
C10.0244 (10)0.0483 (14)0.0233 (10)−0.0004 (10)0.0095 (9)−0.0095 (10)
C20.0249 (10)0.0344 (12)0.0219 (10)0.0017 (9)0.0056 (8)−0.0048 (9)
C30.0298 (12)0.0499 (15)0.0248 (11)0.0014 (11)0.0058 (9)−0.0130 (11)
C40.0240 (10)0.0298 (11)0.0262 (10)−0.0037 (8)0.0073 (8)−0.0034 (9)
C50.0253 (10)0.0309 (11)0.0228 (10)−0.0025 (8)0.0103 (8)−0.0013 (9)
C60.0226 (9)0.0227 (10)0.0197 (9)0.0010 (8)0.0085 (8)−0.0014 (8)
C70.0218 (9)0.0238 (9)0.0194 (9)0.0003 (8)0.0088 (8)0.0002 (8)
C80.0268 (10)0.0336 (11)0.0241 (10)−0.0054 (9)0.0133 (9)−0.0024 (9)
C90.0325 (11)0.0333 (12)0.0211 (10)−0.0023 (9)0.0147 (9)−0.0014 (9)
C100.0285 (10)0.0266 (10)0.0184 (9)0.0006 (8)0.0090 (8)−0.0009 (8)
C110.0330 (11)0.0280 (11)0.0199 (9)−0.0015 (9)0.0079 (9)−0.0029 (8)
C120.0236 (10)0.0375 (12)0.0230 (10)−0.0036 (9)0.0102 (8)−0.0057 (9)
C130.0332 (12)0.0447 (14)0.0304 (12)0.0028 (10)0.0207 (10)0.0034 (10)
C140.0238 (10)0.0434 (13)0.0333 (12)0.0025 (10)0.0150 (9)0.0015 (11)

Geometric parameters (Å, °)

O5—Cu12.563 (3)C4—C51.387 (3)
O5—H5B0.86 (6)C4—H4A0.9300
O5—H5C0.72 (5)C5—C61.390 (3)
O6—Cu12.499 (3)C5—H5A0.9300
O6—H6A0.74 (4)C6—N11.353 (3)
O6—H6B0.96 (6)C6—C71.481 (3)
O7—H7A0.81 (5)C7—N21.357 (3)
O7—H7B0.78 (7)C7—C81.385 (3)
O8—H8B0.76 (6)C8—C91.388 (3)
O9—H9B0.86 (5)C8—H8A0.9300
O9—H9C0.97 (6)C9—C101.386 (3)
N1—Cu12.018 (2)C9—H9A0.9300
N2—Cu12.0225 (19)C10—C121.390 (3)
N3—Cu12.003 (2)C10—C111.518 (3)
N3—H3A0.85 (4)C11—O41.249 (3)
N3—H3B0.86 (4)C11—O31.252 (3)
N4—Cu12.015 (2)C12—N21.335 (3)
N4—H4B0.87 (4)C12—H120.9300
N4—H4C0.89 (4)C13—N31.481 (3)
C1—N11.339 (3)C13—C141.506 (4)
C1—C21.390 (3)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C41.378 (3)C14—N41.475 (3)
C2—C31.522 (3)C14—H14A0.9700
C3—O11.237 (4)C14—H14B0.9700
C3—O21.247 (4)
O5—Cu1—O6174.49 (10)C4—C2—C1118.0 (2)
O5—Cu1—N186.22 (11)C4—C2—C3122.5 (2)
O5—Cu1—N288.78 (10)C1—C2—C3119.5 (2)
O5—Cu1—N390.26 (10)O1—C3—O2126.1 (3)
O5—Cu1—N489.86 (11)O1—C3—C2116.8 (3)
O6—Cu1—N189.50 (10)O2—C3—C2117.1 (3)
O6—Cu1—N293.97 (10)C2—C4—C5119.9 (2)
O6—Cu1—N386.84 (10)C2—C4—H4A120.1
O6—Cu1—N494.56 (11)C5—C4—H4A120.1
N3—Cu1—N485.24 (9)C4—C5—C6118.9 (2)
N3—Cu1—N197.29 (9)C4—C5—H5A120.5
N4—Cu1—N1175.34 (9)C6—C5—H5A120.5
N3—Cu1—N2177.97 (9)N1—C6—C5121.5 (2)
N4—Cu1—N296.54 (8)N1—C6—C7114.76 (18)
N1—Cu1—N280.87 (8)C5—C6—C7123.7 (2)
H5B—O5—H5C101 (5)N2—C7—C8121.3 (2)
H6A—O6—H6B112 (5)N2—C7—C6115.00 (18)
H7A—O7—H7B118 (6)C8—C7—C6123.65 (19)
H9B—O9—H9C123 (4)C7—C8—C9119.2 (2)
Cu1—O5—H5B100 (3)C7—C8—H8A120.4
Cu1—O5—H5C120 (5)C9—C8—H8A120.4
H5B—O5—H5C100 (6)C10—C9—C8119.8 (2)
Cu1—O6—H6B113 (4)C10—C9—H9A120.1
H6A—O6—H6B112 (5)C8—C9—H9A120.1
Cu1—O6—H6A112 (3)C9—C10—C12117.5 (2)
C1—N1—C6118.6 (2)C9—C10—C11122.6 (2)
C1—N1—Cu1126.54 (17)C12—C10—C11119.8 (2)
C6—N1—Cu1114.80 (14)O4—C11—O3125.9 (2)
C12—N2—C7118.72 (19)O4—C11—C10117.5 (2)
C12—N2—Cu1126.92 (16)O3—C11—C10116.7 (2)
C7—N2—Cu1114.34 (15)N2—C12—C10123.4 (2)
C13—N3—Cu1108.16 (16)N2—C12—H12118.3
C13—N3—H3A108 (2)C10—C12—H12118.3
Cu1—N3—H3A114 (2)N3—C13—C14107.8 (2)
C13—N3—H3B110 (2)N3—C13—H13A110.1
Cu1—N3—H3B108 (2)C14—C13—H13A110.1
H3A—N3—H3B109 (3)N3—C13—H13B110.1
C14—N4—Cu1107.68 (16)C14—C13—H13B110.1
C14—N4—H4B106 (2)H13A—C13—H13B108.5
Cu1—N4—H4B114 (2)N4—C14—C13107.7 (2)
C14—N4—H4C108 (2)N4—C14—H14A110.2
Cu1—N4—H4C110 (2)C13—C14—H14A110.2
H4B—N4—H4C110 (3)N4—C14—H14B110.2
N1—C1—C2123.1 (2)C13—C14—H14B110.2
N1—C1—H1118.5H14A—C14—H14B108.5
C2—C1—H1118.5
C1—N1—Cu1—N32.7 (2)N2—C7—C8—C9−0.3 (4)
C6—N1—Cu1—N3−175.05 (17)C6—C7—C8—C9179.0 (2)
C1—N1—Cu1—N2−178.1 (2)C7—C8—C9—C10−0.2 (4)
C6—N1—Cu1—N24.10 (17)C8—C9—C10—C12−0.3 (4)
C12—N2—Cu1—N4−6.3 (2)C8—C9—C10—C11178.8 (2)
C7—N2—Cu1—N4171.90 (17)C9—C10—C11—O4162.4 (2)
C12—N2—Cu1—N1177.6 (2)C12—C10—C11—O4−18.6 (3)
C7—N2—Cu1—N1−4.19 (16)C9—C10—C11—O3−18.6 (4)
C13—N3—Cu1—N413.46 (17)C12—C10—C11—O3160.4 (2)
C13—N3—Cu1—N1−170.47 (17)C9—C10—C12—N21.5 (4)
C14—N4—Cu1—N315.41 (18)C11—C10—C12—N2−177.6 (2)
C14—N4—Cu1—N2−163.62 (17)N3—C13—C14—N453.5 (3)
N1—C1—C2—C4−1.4 (4)C2—C1—N1—C61.8 (4)
N1—C1—C2—C3−178.9 (3)C2—C1—N1—Cu1−175.9 (2)
C4—C2—C3—O1−167.1 (3)C5—C6—N1—C1−0.5 (4)
C1—C2—C3—O110.4 (4)C7—C6—N1—C1178.7 (2)
C4—C2—C3—O211.9 (4)C5—C6—N1—Cu1177.44 (18)
C1—C2—C3—O2−170.6 (3)C7—C6—N1—Cu1−3.3 (3)
C1—C2—C4—C5−0.3 (4)C10—C12—N2—C7−2.0 (4)
C3—C2—C4—C5177.2 (2)C10—C12—N2—Cu1176.16 (18)
C2—C4—C5—C61.4 (4)C8—C7—N2—C121.4 (3)
C4—C5—C6—N1−1.1 (4)C6—C7—N2—C12−178.0 (2)
C4—C5—C6—C7179.8 (2)C8—C7—N2—Cu1−177.01 (18)
N1—C6—C7—N2−0.2 (3)C6—C7—N2—Cu13.6 (2)
C5—C6—C7—N2179.0 (2)C14—C13—N3—Cu1−39.3 (2)
N1—C6—C7—C8−179.6 (2)C13—C14—N4—Cu1−40.8 (3)
C5—C6—C7—C8−0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.84 (3)2.11 (3)2.881 (3)153 (4)
N3—H3B···O3ii0.86 (4)2.21 (4)3.031 (3)159 (4)
N4—H4B···O80.87 (3)2.20 (3)3.054 (3)171 (4)
N4—H4C···O9iii0.89 (4)2.23 (4)3.069 (4)158 (4)
O5—H5B···O7iv0.86 (6)1.97 (6)2.807 (4)164 (5)
O5—H5C···O9ii0.72 (7)2.08 (6)2.779 (5)165 (5)
O6—H6A···O1i0.74 (5)1.99 (5)2.726 (4)171 (4)
O6—H6B···O3iii0.95 (7)2.51 (7)3.267 (4)136 (5)
O7—H7A···O20.82 (6)2.00 (6)2.776 (5)158 (5)
O7—H7B···O4v0.78 (7)2.11 (7)2.827 (4)153 (7)
O8—H8B···O7iv0.76 (6)2.22 (6)2.969 (5)178 (8)
O9—H9B···O4vi0.86 (6)1.96 (5)2.744 (4)152 (5)
O9—H9C···O30.97 (6)1.74 (6)2.706 (3)169 (4)

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x, −y+2, z+1/2; (iii) x, −y+1, z+1/2; (iv) −x+1/2, −y+5/2, −z+1; (v) −x+1/2, −y+3/2, −z+1; (vi) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2516).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Geary, E. A. M., Hirata, N., Clifford, J., Durrant, J. R., Parsons, S., Dawson, A., Yellowlees, L. J. & Robertson, N. (2003). Dalton Trans. pp. 3757–3762.
  • Hafizovic, J., Olsbye, U. & Lillerud, K. P. (2006). Acta Cryst. E62, m414–m416.
  • Matthews, C. J., Elsegood, M. R. J., Bernardinelli, G., Clegg, W. & Williams, A. F. (2004). Dalton Trans. pp. 492–497. [PubMed]
  • Min, D., Yoon, S. S. & Lee, S. W. (2002). Inorg. Chem. Commun.5, 143–146.
  • Schoknechta, B. & Kempe, R. (2004). Z. Anorg. Allg. Chem.630, 1377–1379.
  • Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography