PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1925.
Published online 2008 September 13. doi:  10.1107/S1600536808028638
PMCID: PMC2959421

4-(4-Bromo­phen­yl)-4,5,6,7-tetra­hydro-3-methyl-6-oxo-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile ethanol solvate

Abstract

In the structure of the title compound, C20H15BrN4O·C2H6O, the hydrogenated pyridinone ring adopts an envelope conformation. The dihedral angle between the bromo-substituted phenyl ring and the pyrazole ring is 79.6 (1)°, and that between the non-substituted phenyl ring and the pyrazole ring is 51.2 (1)°. In the crystal structure, mol­ecules are linked via inter­molecular N—H(...)O and O—H(...)N hydrogen bonds. A short inter­molecular N(...)Br contact [3.213 (4) Å] is present in the crystal structure.

Related literature

For general background, see: Falcó et al. (2005 [triangle]); Kung & Wager (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1925-scheme1.jpg

Experimental

Crystal data

  • C20H15BrN4O·C2H6O
  • M r = 453.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1925-efi1.jpg
  • a = 21.871 (9) Å
  • b = 9.209 (4) Å
  • c = 10.552 (5) Å
  • β = 90.370 (5)°
  • V = 2125.4 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.96 mm−1
  • T = 295 (2) K
  • 0.31 × 0.24 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.586, T max = 0.770
  • 10428 measured reflections
  • 3947 independent reflections
  • 2414 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.121
  • S = 1.01
  • 3947 reflections
  • 265 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028638/xu2452sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028638/xu2452Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20772025) and the Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006).

supplementary crystallographic information

Comment

Pyrazolo[3,4-b]pyridine-6-ones as a subunit of pyrazolo[3,4-b]pyridine acted as potential hypnotic drugs in many cases (Falcó et al., 2005). Hydrogenated pyrazolo[3,4-b]pyridin-6-ones have been found with good biological activity such as GSK-3 inhibitors (Kung et al., 2007) and have the potential to be used as novel building blocks to construct new nitrogen-containing molecules. The title compound is one of the hydrogenated pyrazolo[3,4-b]pyridin-6-one derivatives. Its crystal structure is presented here.

In the title compound (Fig. 1) there are four rings, three planar rings and one nonplanar hydrogenated pyridinone ring. The hydrogenated pyridinone ring is fused to the pyrazole ring and adopts an envelope conformation with C4 at flap position. The dihedral angle between the bromo-substituted benzene ring and the pyrazole ring is 79.6 (1)° and that between the non-substituted phenyl ring and the pyrazole ring is 51.2 (1)°.

Intermolecular N—H···O and O—H···N hydrogen bonding (Table 1) and the weak intermolecular Br1···N4i contact present in the crystal structure [symmetry code: (i) 1-x, -1/2+y, 1/2-z].

Experimental

4-Bromobenzaldehyde (1 mmol) and ethyl cyanoacetate (1 mmol) were added to 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The mixture was stirred at 353 K until the disappearance of bromobenzaldehyde. Upon cooling to room temperature, 5-amino-3-methyl-1-phenylpyrazole (1 mmol) was added and the mixture was stirred at room temperature for a certain period of time to complete the reaction (monitored by TLC). The reaction time was 9 h totally. Upon completion, the product was not separated from the reaction system; instead, 4 ml of ethanol was added. Single crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement

H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.97 Å, O—H = 0.82 Å and C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(CH3, OH, NH) and 1.2Ueq(CH, CH2).

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen bonding.

Crystal data

C20H15BrN4O·C2H6OF(000) = 928
Mr = 453.34Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2154 reflections
a = 21.871 (9) Åθ = 2.4–22.3°
b = 9.209 (4) ŵ = 1.96 mm1
c = 10.552 (5) ÅT = 295 K
β = 90.370 (5)°Block, colourless
V = 2125.4 (15) Å30.31 × 0.24 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3947 independent reflections
Radiation source: fine-focus sealed tube2414 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −26→26
Tmin = 0.586, Tmax = 0.770k = −11→9
10428 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0415P)2 + 1.3425P] where P = (Fo2 + 2Fc2)/3
3947 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.449857 (19)0.58567 (7)0.18723 (5)0.1023 (3)
O10.77687 (11)0.8095 (2)0.2363 (2)0.0553 (6)
O20.83439 (11)0.5202 (3)0.0508 (2)0.0558 (6)
H20.82200.44300.02180.084*
N10.77906 (13)0.2474 (3)0.4696 (2)0.0478 (7)
N20.80852 (12)0.3344 (3)0.3832 (2)0.0431 (6)
N30.79796 (12)0.5800 (3)0.2978 (2)0.0434 (6)
H3D0.81740.56060.21740.065*
N40.67632 (15)0.9759 (4)0.4375 (3)0.0732 (9)
C10.73512 (15)0.3303 (4)0.5195 (3)0.0442 (8)
C20.73547 (14)0.4703 (3)0.4646 (3)0.0404 (7)
C30.69597 (14)0.6023 (3)0.4808 (3)0.0414 (8)
H30.68700.61280.57120.050*
C40.73741 (14)0.7328 (3)0.4401 (3)0.0407 (8)
H40.76880.74320.50610.049*
C50.77157 (14)0.7129 (4)0.3138 (3)0.0418 (8)
C60.78163 (14)0.4672 (3)0.3795 (3)0.0387 (7)
C70.70350 (16)0.8703 (4)0.4370 (3)0.0487 (8)
C80.69393 (18)0.2752 (4)0.6197 (3)0.0648 (10)
H8A0.65460.25370.58330.097*
H8B0.68950.34770.68430.097*
H8C0.71100.18860.65610.097*
C90.63578 (14)0.5971 (3)0.4089 (3)0.0426 (8)
C100.58214 (16)0.6426 (4)0.4648 (3)0.0628 (10)
H100.58300.67500.54820.075*
C110.52737 (17)0.6412 (5)0.3997 (4)0.0771 (13)
H110.49180.67210.43910.092*
C120.52561 (16)0.5939 (4)0.2764 (4)0.0626 (10)
C130.57776 (16)0.5502 (4)0.2179 (3)0.0661 (11)
H130.57650.51890.13410.079*
C140.63241 (16)0.5528 (4)0.2835 (3)0.0586 (10)
H140.66800.52400.24270.070*
C150.85626 (15)0.2756 (4)0.3081 (3)0.0456 (8)
C160.84675 (18)0.1459 (4)0.2460 (3)0.0559 (9)
H160.80970.09690.25290.067*
C170.8936 (2)0.0902 (5)0.1732 (4)0.0769 (13)
H170.88800.00260.13090.092*
C180.9477 (2)0.1616 (6)0.1624 (4)0.0854 (14)
H180.97860.12310.11250.103*
C190.95680 (19)0.2899 (6)0.2249 (4)0.0816 (13)
H190.99390.33840.21750.098*
C200.91114 (17)0.3477 (4)0.2990 (4)0.0627 (10)
H200.91740.43440.34230.075*
C210.89214 (19)0.5522 (5)−0.0008 (4)0.0750 (12)
H21A0.88790.5692−0.09110.090*
H21B0.91920.46990.01140.090*
C220.9183 (3)0.6785 (6)0.0587 (6)0.128 (2)
H22A0.89720.76370.02980.192*
H22B0.96070.68550.03710.192*
H22C0.91440.67040.14900.192*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0484 (3)0.1630 (6)0.0952 (4)0.0022 (3)−0.0134 (2)−0.0219 (3)
O10.0811 (17)0.0401 (14)0.0446 (13)−0.0010 (13)0.0004 (11)0.0073 (11)
O20.0628 (16)0.0541 (16)0.0508 (13)−0.0062 (13)0.0098 (11)−0.0147 (12)
N10.0548 (17)0.0385 (16)0.0503 (16)−0.0019 (14)0.0086 (13)0.0083 (13)
N20.0485 (16)0.0365 (16)0.0444 (14)0.0022 (14)0.0089 (12)0.0029 (13)
N30.0540 (16)0.0375 (16)0.0387 (14)0.0027 (13)0.0093 (12)0.0032 (12)
N40.065 (2)0.049 (2)0.105 (3)0.0064 (18)−0.0053 (18)−0.0055 (19)
C10.0478 (19)0.039 (2)0.0458 (18)−0.0049 (17)0.0068 (15)0.0041 (16)
C20.0456 (18)0.039 (2)0.0366 (16)0.0001 (16)0.0007 (14)0.0015 (14)
C30.0476 (18)0.042 (2)0.0344 (15)−0.0009 (16)0.0043 (13)−0.0030 (14)
C40.0491 (18)0.0367 (19)0.0364 (16)0.0024 (16)−0.0051 (14)−0.0046 (14)
C50.0486 (19)0.040 (2)0.0371 (16)−0.0037 (16)−0.0039 (14)0.0000 (16)
C60.0447 (18)0.0332 (19)0.0383 (16)0.0012 (15)0.0017 (14)0.0015 (14)
C70.052 (2)0.040 (2)0.054 (2)−0.0029 (18)−0.0030 (16)−0.0052 (16)
C80.074 (3)0.053 (2)0.068 (2)−0.001 (2)0.024 (2)0.0119 (19)
C90.0445 (18)0.0367 (19)0.0466 (18)0.0004 (15)0.0051 (14)−0.0050 (15)
C100.055 (2)0.084 (3)0.049 (2)−0.001 (2)0.0105 (17)−0.0201 (19)
C110.043 (2)0.117 (4)0.072 (3)0.004 (2)0.0126 (19)−0.022 (3)
C120.043 (2)0.075 (3)0.069 (2)−0.001 (2)−0.0050 (18)−0.009 (2)
C130.054 (2)0.087 (3)0.057 (2)0.005 (2)−0.0018 (18)−0.025 (2)
C140.047 (2)0.073 (3)0.056 (2)0.0102 (19)0.0020 (16)−0.0236 (19)
C150.050 (2)0.043 (2)0.0433 (17)0.0105 (17)0.0019 (15)0.0024 (16)
C160.071 (2)0.046 (2)0.051 (2)0.0061 (19)0.0051 (18)−0.0011 (17)
C170.119 (4)0.052 (3)0.060 (2)0.021 (3)0.017 (2)−0.004 (2)
C180.091 (4)0.086 (4)0.080 (3)0.038 (3)0.034 (3)0.012 (3)
C190.054 (3)0.093 (4)0.098 (3)0.008 (3)0.017 (2)0.007 (3)
C200.054 (2)0.062 (3)0.072 (2)0.002 (2)0.0058 (19)−0.001 (2)
C210.071 (3)0.079 (3)0.075 (3)−0.010 (2)0.016 (2)−0.015 (2)
C220.105 (4)0.127 (5)0.152 (5)−0.062 (4)0.036 (4)−0.049 (4)

Geometric parameters (Å, °)

Br1—C121.901 (4)C9—C141.386 (4)
O1—C51.215 (3)C10—C111.377 (5)
O2—C211.409 (4)C10—H100.9300
O2—H20.8200C11—C121.373 (5)
N1—C11.338 (4)C11—H110.9300
N1—N21.377 (3)C12—C131.361 (5)
N2—C61.357 (4)C13—C141.378 (5)
N2—C151.422 (4)C13—H130.9300
N3—C51.364 (4)C14—H140.9300
N3—C61.398 (4)C15—C201.376 (5)
N3—H3D0.9687C15—C161.377 (5)
N4—C71.140 (4)C16—C171.383 (5)
C1—C21.414 (4)C16—H160.9300
C1—C81.482 (4)C17—C181.359 (6)
C2—C61.356 (4)C17—H170.9300
C2—C31.502 (4)C18—C191.367 (6)
C3—C91.516 (4)C18—H180.9300
C3—C41.567 (4)C19—C201.379 (5)
C3—H30.9800C19—H190.9300
C4—C71.468 (5)C20—H200.9300
C4—C51.544 (4)C21—C221.438 (6)
C4—H40.9800C21—H21A0.9700
C8—H8A0.9600C21—H21B0.9700
C8—H8B0.9600C22—H22A0.9600
C8—H8C0.9600C22—H22B0.9600
C9—C101.381 (5)C22—H22C0.9600
C21—O2—H2109.5C9—C10—H10119.2
C1—N1—N2105.7 (2)C12—C11—C10119.6 (3)
C6—N2—N1109.8 (2)C12—C11—H11120.2
C6—N2—C15130.3 (3)C10—C11—H11120.2
N1—N2—C15119.7 (3)C13—C12—C11120.4 (3)
C5—N3—C6118.8 (3)C13—C12—Br1119.6 (3)
C5—N3—H3D117.5C11—C12—Br1120.0 (3)
C6—N3—H3D121.2C12—C13—C14119.6 (3)
N1—C1—C2110.6 (3)C12—C13—H13120.2
N1—C1—C8121.8 (3)C14—C13—H13120.2
C2—C1—C8127.5 (3)C13—C14—C9121.7 (3)
C6—C2—C1105.0 (3)C13—C14—H14119.1
C6—C2—C3121.6 (3)C9—C14—H14119.1
C1—C2—C3133.4 (3)C20—C15—C16121.0 (3)
C2—C3—C9114.6 (3)C20—C15—N2120.0 (3)
C2—C3—C4104.8 (2)C16—C15—N2119.1 (3)
C9—C3—C4112.9 (2)C15—C16—C17118.4 (4)
C2—C3—H3108.1C15—C16—H16120.8
C9—C3—H3108.1C17—C16—H16120.8
C4—C3—H3108.1C18—C17—C16121.0 (4)
C7—C4—C5109.3 (3)C18—C17—H17119.5
C7—C4—C3112.0 (3)C16—C17—H17119.5
C5—C4—C3115.4 (2)C17—C18—C19120.1 (4)
C7—C4—H4106.5C17—C18—H18119.9
C5—C4—H4106.5C19—C18—H18119.9
C3—C4—H4106.5C18—C19—C20120.2 (4)
O1—C5—N3122.1 (3)C18—C19—H19119.9
O1—C5—C4122.9 (3)C20—C19—H19119.9
N3—C5—C4114.9 (3)C15—C20—C19119.3 (4)
C2—C6—N2108.9 (3)C15—C20—H20120.4
C2—C6—N3125.9 (3)C19—C20—H20120.4
N2—C6—N3125.1 (3)O2—C21—C22110.8 (3)
N4—C7—C4178.1 (4)O2—C21—H21A109.5
C1—C8—H8A109.5C22—C21—H21A109.5
C1—C8—H8B109.5O2—C21—H21B109.5
H8A—C8—H8B109.5C22—C21—H21B109.5
C1—C8—H8C109.5H21A—C21—H21B108.1
H8A—C8—H8C109.5C21—C22—H22A109.5
H8B—C8—H8C109.5C21—C22—H22B109.5
C10—C9—C14117.1 (3)H22A—C22—H22B109.5
C10—C9—C3121.0 (3)C21—C22—H22C109.5
C14—C9—C3121.8 (3)H22A—C22—H22C109.5
C11—C10—C9121.6 (3)H22B—C22—H22C109.5
C11—C10—H10119.2
C1—N1—N2—C6−1.3 (3)C5—N3—C6—C29.3 (4)
C1—N1—N2—C15−176.8 (3)C5—N3—C6—N2−172.9 (3)
N2—N1—C1—C20.7 (3)C5—C4—C7—N4168 (11)
N2—N1—C1—C8−178.6 (3)C3—C4—C7—N439 (12)
N1—C1—C2—C60.0 (3)C2—C3—C9—C10137.1 (3)
C8—C1—C2—C6179.4 (3)C4—C3—C9—C10−103.1 (4)
N1—C1—C2—C3177.5 (3)C2—C3—C9—C14−45.7 (4)
C8—C1—C2—C3−3.1 (6)C4—C3—C9—C1474.2 (4)
C6—C2—C3—C997.3 (3)C14—C9—C10—C111.3 (6)
C1—C2—C3—C9−79.9 (4)C3—C9—C10—C11178.7 (4)
C6—C2—C3—C4−27.0 (4)C9—C10—C11—C12−0.1 (7)
C1—C2—C3—C4155.8 (3)C10—C11—C12—C13−0.8 (7)
C2—C3—C4—C7173.7 (2)C10—C11—C12—Br1178.0 (3)
C9—C3—C4—C748.4 (3)C11—C12—C13—C140.5 (6)
C2—C3—C4—C547.8 (3)Br1—C12—C13—C14−178.4 (3)
C9—C3—C4—C5−77.5 (3)C12—C13—C14—C90.8 (6)
C6—N3—C5—O1−169.4 (3)C10—C9—C14—C13−1.7 (6)
C6—N3—C5—C413.4 (4)C3—C9—C14—C13−179.0 (3)
C7—C4—C5—O111.5 (4)C6—N2—C15—C2054.7 (5)
C3—C4—C5—O1138.8 (3)N1—N2—C15—C20−130.8 (3)
C7—C4—C5—N3−171.3 (3)C6—N2—C15—C16−125.7 (4)
C3—C4—C5—N3−44.0 (4)N1—N2—C15—C1648.7 (4)
C1—C2—C6—N2−0.8 (3)C20—C15—C16—C17−0.6 (5)
C3—C2—C6—N2−178.7 (3)N2—C15—C16—C17179.9 (3)
C1—C2—C6—N3177.2 (3)C15—C16—C17—C18−0.2 (6)
C3—C2—C6—N3−0.6 (5)C16—C17—C18—C190.6 (7)
N1—N2—C6—C21.3 (3)C17—C18—C19—C20−0.1 (7)
C15—N2—C6—C2176.2 (3)C16—C15—C20—C191.0 (5)
N1—N2—C6—N3−176.7 (3)N2—C15—C20—C19−179.5 (3)
C15—N2—C6—N3−1.8 (5)C18—C19—C20—C15−0.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.822.062.874 (4)171.
N3—H3D···O20.971.842.786 (3)166.

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2452).

References

  • Bruker (1997). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Falcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). Eur. J. Med. Chem.40, 1179–1187. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kung, D. W. & Wager, T. T. (2007). US Patent 7 300 944.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography