PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1264–m1265.
Published online 2008 September 13. doi:  10.1107/S1600536808028663
PMCID: PMC2959400

Bis(diethyl­enetriamine-κ3 N,N′,N′′)nickel(II) bis­(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S′)nickel(II)

Abstract

The title compound, [Ni(C4H13N3)2][Ni(C4N2S2)2], has been synthesized by the reaction of Ni(ClO4)2·6H2O, diethyl­enetriamine (deta) and Na2[Ni(mnt)2] [mnt = maleonitrile­dithiol­ate(2-)] in methanol. The structure is composed of a [Ni(deta)2]2+ cation and a [Ni(mnt)2]2− anion. The coordination geometry of the NiII ion in the cation is slightly distorted octa­hedral, defined by six N atoms from two deta ligands, while the NiII ion in the anion is four-coordinated by four S atoms from two mnt ligands in a slightly distorted square-planar geometry. The cations and anions are connected by N—H(...)N hydrogen bonds.

Related literature

For related literature, see: Bois et al. (1998 [triangle]); Keum et al. (1992 [triangle]); Miller et al. (1989 [triangle]); Ren et al. (2001 [triangle]); Robertson & Cronin (2002 [triangle]); Simmons et al. (1962 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1264-scheme1.jpg

Experimental

Crystal data

  • [Ni(C4H13N3)2][Ni(C4N2S2)2]
  • M r = 604.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1264-efi1.jpg
  • a = 9.589 (3) Å
  • b = 16.910 (5) Å
  • c = 16.146 (4) Å
  • β = 97.491 (4)°
  • V = 2595.8 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.80 mm−1
  • T = 273 (2) K
  • 0.19 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.717, T max = 0.766
  • 13610 measured reflections
  • 5065 independent reflections
  • 3393 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.109
  • S = 0.99
  • 5065 reflections
  • 329 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.86 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028663/hy2151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028663/hy2151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 20701027) and the Postdoctoral Scientific Foundation of China (No. 200704211076).

supplementary crystallographic information

Comment

Bidentate dithiolate ligands form well square-planar complexes with nickel ions in different oxidation states. Due to their unique properties and potential applications in such areas as conducting and magnetic materials, nearinfrared dyes, nonlinear optical materials (Robertson & Cronin, 2002), the ion-pair complexes formed from [M(mnt)2]n- (M = Ni, Pd, Pt or Cu) and transition metal complex cations have been intensively studied (Bois et al., 1998; Miller et al., 1989; Ren et al., 2001). We report here a new ion-pair complex.

The title compound is composed of a [Ni(deta)2]2+ cation and a [Ni(mnt)2]2- anion [deta = diethylenetriamine; mnt = maleonitriledithiolate(2-)] (Fig. 1). In the cation, the NiII ion has a slightly distorted octahedral geometry, formed by six N atoms from two deta ligands, with the Ni—N distances in a range from 2.065 (3) to 2.164 (3) Å (Table 1), which are consistent with the corresponding values in [Ni(en)3][Ni(mnt)2] (en = ethylenediamine) (Keum et al., 1992). The NiII ion in the anion is four-coordinated by four S atoms and these five atoms form a square plane with a mean deviation of 0.161 (6) Å. The Ni—S bond lengths [2.1617 (12)–2.1739 (12) Å] are also in agreement with those found in the above complex. The cations and anions are connected by N—H···N hydrogen bonds (Table 2).

Experimental

The synthesis procedure of the title compound was as following: Ni(ClO4)2.6H2O (0.037 g, 0.10 mmol) was dissolved in methanol (10 ml) at room temperature with stirring and then deta (0.021 g, 0.20 mmol) was added. A solution of Na2[Ni(mnt)2] (0.033 g, 0.10 mmol) (Simmons et al., 1962) in methanol (10 ml) was slowly added to the above solution and the mixture was stirred for another 30 min. After filtering, the filtrate was undisturbed for about two weeks at room temperature in air to produce blue crystals suitable for X-ray diffraction (yield 61.75%, 0.037 g). Analysis, calculated for C16H26N10Ni2S4: C 31.81, H 4.34, N 23.19%; found: C 31.76, H 4.31, N 23.24%.

Refinement

H atoms bound to N atoms were found in difference Fourier maps and refined isotropically, with a restraint of N—H = 0.86 (1) Å. H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Ni(C4H13N3)2][Ni(C4N2S2)2]F(000) = 1248
Mr = 604.13Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3163 reflections
a = 9.589 (3) Åθ = 2.4–23.8°
b = 16.910 (5) ŵ = 1.80 mm1
c = 16.146 (4) ÅT = 273 K
β = 97.491 (4)°Block, blue
V = 2595.8 (13) Å30.19 × 0.17 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5065 independent reflections
Radiation source: fine-focus sealed tube3393 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.717, Tmax = 0.766k = −20→19
13610 measured reflectionsl = −17→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.058P)2] where P = (Fo2 + 2Fc2)/3
5065 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.86 e Å3
10 restraintsΔρmin = −0.26 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.72467 (5)0.23459 (3)0.01993 (3)0.04722 (16)
Ni20.97276 (5)0.40148 (3)0.25321 (3)0.04194 (15)
S10.78132 (10)0.13475 (6)0.10229 (6)0.0555 (3)
S20.90403 (11)0.21706 (7)−0.04639 (7)0.0638 (3)
S30.52234 (11)0.23887 (7)0.06673 (7)0.0598 (3)
S40.68871 (10)0.34610 (6)−0.04535 (7)0.0576 (3)
N11.0808 (4)0.0021 (3)0.1686 (3)0.0828 (12)
N21.2281 (4)0.0992 (2)−0.0397 (2)0.0727 (11)
N30.1991 (4)0.3603 (3)0.0519 (3)0.0980 (15)
N40.3914 (5)0.4842 (3)−0.1113 (3)0.0902 (13)
N50.7588 (4)0.4323 (2)0.2690 (2)0.0532 (8)
N60.8844 (4)0.2901 (2)0.2388 (2)0.0573 (9)
N71.1630 (4)0.3364 (3)0.2450 (3)0.0670 (10)
N80.9396 (4)0.4370 (2)0.1246 (2)0.0551 (9)
N91.0692 (4)0.5111 (2)0.2663 (2)0.0576 (9)
N101.0222 (4)0.4021 (3)0.3870 (2)0.0552 (9)
C10.9425 (4)0.1059 (2)0.0742 (2)0.0487 (9)
C20.9942 (4)0.1410 (2)0.0098 (2)0.0498 (9)
C30.4468 (4)0.3230 (2)0.0193 (2)0.0546 (10)
C40.5168 (4)0.3686 (2)−0.0311 (2)0.0532 (10)
C51.0189 (4)0.0466 (3)0.1249 (3)0.0587 (11)
C61.1252 (4)0.1169 (3)−0.0162 (2)0.0564 (11)
C70.3083 (5)0.3441 (3)0.0363 (3)0.0676 (12)
C80.4494 (5)0.4331 (3)−0.0751 (3)0.0656 (12)
C90.6713 (4)0.3606 (3)0.2543 (3)0.0690 (12)
H9C0.63570.35640.19540.083*
H9B0.59160.36390.28540.083*
C100.7577 (5)0.2887 (3)0.2815 (3)0.0711 (13)
H10A0.78410.28940.34160.085*
H10B0.70390.24100.26680.085*
C110.9946 (5)0.2337 (3)0.2698 (3)0.0759 (14)
H11A0.96340.18020.25630.091*
H11B1.01610.23810.33010.091*
C121.1225 (6)0.2523 (3)0.2293 (3)0.0850 (16)
H12A1.19940.21810.25180.102*
H12B1.10300.24290.16960.102*
C131.0004 (5)0.5157 (3)0.1168 (3)0.0748 (13)
H13A0.94360.54500.07300.090*
H13B1.09440.51060.10130.090*
C141.0069 (5)0.5602 (3)0.1974 (3)0.0748 (13)
H14A1.06270.60780.19450.090*
H14B0.91290.57580.20660.090*
C151.0661 (5)0.5377 (3)0.3519 (3)0.0694 (12)
H15A0.97210.55560.35850.083*
H15B1.13030.58180.36390.083*
C161.1076 (5)0.4719 (3)0.4112 (2)0.0704 (13)
H16A1.20630.45950.41090.084*
H16B1.09430.48790.46740.084*
H8A0.8544 (16)0.441 (2)0.101 (2)0.051 (11)*
H8B0.971 (4)0.4005 (18)0.095 (2)0.073 (15)*
H7A1.219 (4)0.352 (3)0.211 (2)0.090 (17)*
H10C0.944 (3)0.406 (3)0.408 (3)0.091 (17)*
H5A0.727 (5)0.4692 (19)0.235 (2)0.093 (18)*
H6A0.860 (4)0.281 (2)0.1865 (8)0.055 (12)*
H7B1.217 (4)0.341 (3)0.2916 (17)0.12 (2)*
H10D1.066 (6)0.362 (3)0.409 (4)0.16 (3)*
H9A1.1581 (18)0.503 (4)0.267 (4)0.16 (3)*
H5B0.769 (5)0.448 (3)0.3200 (12)0.101 (18)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0377 (3)0.0536 (3)0.0497 (3)0.0057 (2)0.0033 (2)−0.0112 (2)
Ni20.0429 (3)0.0502 (3)0.0324 (2)−0.0003 (2)0.00373 (19)−0.0015 (2)
S10.0412 (5)0.0638 (7)0.0642 (6)0.0081 (5)0.0164 (5)−0.0001 (5)
S20.0514 (6)0.0822 (8)0.0599 (6)0.0189 (6)0.0160 (5)0.0104 (6)
S30.0503 (6)0.0652 (7)0.0663 (7)0.0126 (5)0.0161 (5)−0.0012 (5)
S40.0451 (6)0.0601 (7)0.0667 (7)0.0028 (5)0.0040 (5)−0.0026 (5)
N10.062 (2)0.098 (3)0.093 (3)0.027 (2)0.024 (2)0.027 (2)
N20.055 (2)0.110 (3)0.055 (2)0.029 (2)0.0172 (18)0.016 (2)
N30.078 (3)0.134 (4)0.089 (3)0.048 (3)0.038 (2)0.009 (3)
N40.097 (3)0.094 (3)0.077 (3)0.032 (3)0.000 (2)0.008 (2)
N50.048 (2)0.067 (2)0.044 (2)0.0015 (18)0.0033 (16)−0.0034 (19)
N60.067 (2)0.056 (2)0.047 (2)−0.0026 (18)−0.0011 (18)−0.0019 (17)
N70.055 (2)0.087 (3)0.059 (2)0.014 (2)0.008 (2)−0.003 (2)
N80.048 (2)0.077 (3)0.0393 (19)0.014 (2)0.0049 (16)0.0003 (18)
N90.065 (2)0.059 (2)0.051 (2)−0.0045 (19)0.0138 (17)−0.0004 (17)
N100.042 (2)0.087 (3)0.0367 (17)−0.009 (2)0.0043 (15)−0.0018 (18)
C10.037 (2)0.058 (3)0.051 (2)0.0068 (18)0.0077 (17)−0.0086 (19)
C20.037 (2)0.064 (3)0.049 (2)0.0069 (19)0.0053 (17)−0.0067 (19)
C30.048 (2)0.068 (3)0.047 (2)0.017 (2)0.0024 (18)−0.016 (2)
C40.050 (2)0.058 (3)0.049 (2)0.013 (2)−0.0017 (18)−0.013 (2)
C50.043 (2)0.073 (3)0.063 (3)0.007 (2)0.020 (2)0.002 (2)
C60.051 (2)0.076 (3)0.043 (2)0.016 (2)0.0078 (18)0.006 (2)
C70.064 (3)0.087 (3)0.053 (3)0.025 (3)0.014 (2)−0.003 (2)
C80.063 (3)0.077 (3)0.054 (3)0.018 (2)−0.003 (2)−0.005 (2)
C90.048 (2)0.092 (4)0.067 (3)−0.018 (3)0.006 (2)−0.014 (3)
C100.073 (3)0.070 (3)0.071 (3)−0.026 (3)0.014 (2)−0.002 (2)
C110.093 (4)0.057 (3)0.073 (3)0.009 (3)−0.009 (3)0.008 (2)
C120.096 (4)0.072 (4)0.082 (3)0.032 (3)−0.005 (3)−0.009 (3)
C130.090 (3)0.081 (4)0.056 (3)0.004 (3)0.021 (2)0.023 (2)
C140.087 (4)0.052 (3)0.085 (3)−0.001 (2)0.012 (3)0.008 (2)
C150.070 (3)0.067 (3)0.071 (3)−0.005 (2)0.010 (2)−0.028 (2)
C160.066 (3)0.100 (4)0.045 (2)−0.025 (3)0.006 (2)−0.013 (2)

Geometric parameters (Å, °)

Ni1—S12.1739 (12)N9—C151.456 (5)
Ni1—S22.1617 (12)N9—H9A0.86 (3)
Ni1—S32.1732 (12)N10—C161.461 (5)
Ni1—S42.1658 (12)N10—H10C0.87 (3)
Ni2—N52.164 (3)N10—H10D0.85 (6)
Ni2—N62.065 (3)C1—C21.347 (5)
Ni2—N72.150 (4)C1—C51.434 (6)
Ni2—N82.145 (3)C2—C61.434 (5)
Ni2—N92.071 (4)C3—C41.359 (6)
Ni2—N102.151 (3)C3—C71.436 (5)
S1—C11.737 (4)C4—C81.412 (6)
S2—C21.738 (4)C9—C101.505 (6)
S3—C31.730 (4)C9—H9C0.9700
S4—C41.737 (4)C9—H9B0.9700
N1—C51.144 (5)C10—H10A0.9700
N2—C61.143 (5)C10—H10B0.9700
N3—C71.141 (5)C11—C121.497 (7)
N4—C81.146 (5)C11—H11A0.9700
N5—C91.477 (5)C11—H11B0.9700
N5—H5A0.86 (3)C12—H12A0.9700
N5—H5B0.86 (3)C12—H12B0.9700
N6—C111.463 (5)C13—C141.497 (6)
N6—C101.473 (5)C13—H13A0.9700
N6—H6A0.86 (2)C13—H13B0.9700
N7—C121.486 (6)C14—H14A0.9700
N7—H7A0.86 (4)C14—H14B0.9700
N7—H7B0.86 (4)C15—C161.488 (6)
N8—C131.466 (6)C15—H15A0.9700
N8—H8A0.86 (3)C15—H15B0.9700
N8—H8B0.86 (3)C16—H16A0.9700
N9—C141.453 (5)C16—H16B0.9700
S2—Ni1—S487.98 (5)C5—C1—S1117.0 (3)
S2—Ni1—S3168.77 (5)C1—C2—C6121.7 (4)
S4—Ni1—S392.72 (4)C1—C2—S2121.4 (3)
S2—Ni1—S192.58 (4)C6—C2—S2116.9 (3)
S4—Ni1—S1170.10 (4)C4—C3—C7121.0 (4)
S3—Ni1—S188.65 (4)C4—C3—S3121.4 (3)
N6—Ni2—N9177.56 (15)C7—C3—S3117.7 (3)
N6—Ni2—N898.00 (14)C3—C4—C8120.7 (4)
N9—Ni2—N881.73 (14)C3—C4—S4120.5 (3)
N6—Ni2—N782.24 (16)C8—C4—S4118.8 (3)
N9—Ni2—N795.37 (17)N1—C5—C1176.5 (5)
N8—Ni2—N795.96 (15)N2—C6—C2177.4 (4)
N6—Ni2—N1098.69 (14)N3—C7—C3178.2 (5)
N9—Ni2—N1081.72 (14)N4—C8—C4178.1 (5)
N8—Ni2—N10163.04 (16)N5—C9—C10109.7 (3)
N7—Ni2—N1089.25 (16)N5—C9—H9C109.7
N6—Ni2—N581.47 (14)C10—C9—H9C109.7
N9—Ni2—N5100.96 (15)N5—C9—H9B109.7
N8—Ni2—N591.32 (13)C10—C9—H9B109.7
N7—Ni2—N5162.93 (16)H9C—C9—H9B108.2
N10—Ni2—N588.20 (14)N6—C10—C9107.8 (3)
C1—S1—Ni1102.61 (14)N6—C10—H10A110.1
C2—S2—Ni1102.53 (13)C9—C10—H10A110.1
C3—S3—Ni1102.40 (15)N6—C10—H10B110.1
C4—S4—Ni1102.68 (15)C9—C10—H10B110.1
C9—N5—Ni2108.1 (3)H10A—C10—H10B108.5
C9—N5—H5A110 (3)N6—C11—C12108.0 (4)
Ni2—N5—H5A111 (3)N6—C11—H11A110.1
C9—N5—H5B114 (3)C12—C11—H11A110.1
Ni2—N5—H5B101 (3)N6—C11—H11B110.1
H5A—N5—H5B112 (5)C12—C11—H11B110.1
C11—N6—C10115.5 (4)H11A—C11—H11B108.4
C11—N6—Ni2106.8 (3)N7—C12—C11109.7 (4)
C10—N6—Ni2108.3 (3)N7—C12—H12A109.7
C11—N6—H6A108 (3)C11—C12—H12A109.7
C10—N6—H6A109 (3)N7—C12—H12B109.7
Ni2—N6—H6A109 (3)C11—C12—H12B109.7
C12—N7—Ni2107.2 (3)H12A—C12—H12B108.2
C12—N7—H7A110 (3)N8—C13—C14110.7 (3)
Ni2—N7—H7A120 (3)N8—C13—H13A109.5
C12—N7—H7B110 (4)C14—C13—H13A109.5
Ni2—N7—H7B109 (4)N8—C13—H13B109.5
H7A—N7—H7B100 (5)C14—C13—H13B109.5
C13—N8—Ni2109.1 (3)H13A—C13—H13B108.1
C13—N8—H8A105 (3)N9—C14—C13110.2 (4)
Ni2—N8—H8A118 (2)N9—C14—H14A109.6
C13—N8—H8B116 (3)C13—C14—H14A109.6
Ni2—N8—H8B108 (3)N9—C14—H14B109.6
H8A—N8—H8B101 (4)C13—C14—H14B109.6
C14—N9—C15119.5 (4)H14A—C14—H14B108.1
C14—N9—Ni2107.4 (3)N9—C15—C16110.1 (4)
C15—N9—Ni2108.0 (3)N9—C15—H15A109.6
C14—N9—H9A114 (4)C16—C15—H15A109.6
C15—N9—H9A100 (4)N9—C15—H15B109.6
Ni2—N9—H9A107 (5)C16—C15—H15B109.6
C16—N10—Ni2108.4 (3)H15A—C15—H15B108.2
C16—N10—H10C108 (3)N10—C16—C15109.8 (3)
Ni2—N10—H10C108 (3)N10—C16—H16A109.7
C16—N10—H10D108 (5)C15—C16—H16A109.7
Ni2—N10—H10D117 (5)N10—C16—H16B109.7
H10C—N10—H10D107 (5)C15—C16—H16B109.7
C2—C1—C5122.5 (3)H16A—C16—H16B108.2
C2—C1—S1120.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5A···N4i0.86 (3)2.30 (4)3.098 (6)154 (3)
N5—H5B···N2ii0.86 (3)2.48 (3)3.186 (5)140 (4)
N7—H7A···N3iii0.86 (4)2.56 (3)3.207 (7)134 (3)
N8—H8B···N3iii0.86 (3)2.48 (4)3.164 (6)138 (3)
N9—H9A···N1iv0.86 (2)2.58 (3)3.387 (6)156 (5)
N10—H10C···N2ii0.87 (3)2.34 (3)3.198 (5)173 (5)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x+1, y, z; (iv) −x+5/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2151).

References

  • Bois, H., Connelly, N. G., Crossley, J. G., Guillorit, J., Lewis, G. R., Orpen, A. G. & Thornton, P. (1998). J. Chem. Soc. Dalton Trans. pp. 2833–2838.
  • Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Keum, C., Kim, C., Kim, C., Kwak, H., Kwon, M. & Namgung, H. (1992). Bull. Korean. Chem. Soc.13, 695–699.
  • Miller, J. S., Calabrese, J. C. & Epstein, A. J. (1989). Inorg. Chem.28, 4230–4238.
  • Ren, X.-M., Duan, C.-Y., Zhu, H.-Z., Meng, Q.-J., Hu, C.-J., Lu, C.-S. & Liu, Y.-J. (2001). Transition Met. Chem.26, 295–299.
  • Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev.227, 93–127.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simmons, H. E., Vest, R. D., Blomstrom, D. C., Roland, J. R. & Cairns, T. L. (1962). J. Am. Chem. Soc.84, 4746–4756.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography