PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1953.
Published online 2008 September 17. doi:  10.1107/S1600536808029292
PMCID: PMC2959399

N-(4-Fluorobenzoyl)-2-hydroxy-4-methyl­benzohydrazide

Abstract

In the title compound, C15H13FN2O3, the aromatic rings are aligned at an angle of 10.15 (3)°. The mol­ecules are packed with π–π stacking inter­actions [mean inter­planar distances of 3.339 (2) and 3.357 (3) Å] and the crystal structure is stabilized by inter­molecular N—H(...)O and O—H(...)O hydrogen bonds. An intramolecular N—H(...)O interaction also occurs.

Related literature

For background on the chemistry of salicylic acid, see: Dou et al. (2006 [triangle]). For related compounds, see: John et al. (2005 [triangle], 2006 [triangle]); Liu et al. (2001 [triangle]); Majumder et al. (2006 [triangle]); Moon et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1953-scheme1.jpg

Experimental

Crystal data

  • C15H13FN2O3
  • M r = 288.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1953-efi1.jpg
  • a = 7.0969 (13) Å
  • b = 7.2994 (14) Å
  • c = 13.701 (3) Å
  • α = 102.854 (2)°
  • β = 97.754 (3)°
  • γ = 105.538 (1)°
  • V = 652.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 (2) K
  • 0.54 × 0.30 × 0.25 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: none
  • 4591 measured reflections
  • 2274 independent reflections
  • 2090 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.139
  • S = 1.02
  • 2274 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond angles (°)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029292/ng2492sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029292/ng2492Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668) and sponsored by the K. C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

The chemistry of salicylic acid has attracted the interest of reseachers since 1860s in the application area of skin science. After a long period, investigations in this area have received a new impulse (Dou et al., 2006) and recently there has been notable progress especially regarding the synthesis of new derivatives. N-acylsalicylhydrazide is one of the important kind, which have been used extensively as ligands in the field of coordination chemistry. Some of the reasons are that the intramolecular hydrogen bond between the O and N atoms plays an important role in the formation of metal complexes, and the N-acylsalicylhydrazide compounds show photoluminescence in the solid state by proton transfer from the O atom to the N atom (Majumder et al., 2006). There several this kind of ligand have been reported, such as N-phenylsalicylhydrazidate (Liu et al., 2001), N-(2-methylpropanoyl)salicylhydrazide (John et al., 2005), N-cyclohexanoylsalicylhydrazidate (John et al., 2006), N-3-phenyl-trans-2-propenoylsalicylhydrazide (Moon et al., 2006) and so on. With the aim of gaining a deeper insight into the structural aspects responsible for the fluorescent properties in the solid state and crystallographic analysis of the title compound (I), has been carried out and the results are presented in this paper.

The molecular structure of (I), C15H13FN2O3, is illustrated in Fig. 1. The bond length and bond angle in (I) are within normal ranges. The bond distances between C—O of carbonyl are significantly shorter than C6—O1 bond distances (Table 1). Atom O1, O2, N1 and N2 are nearly coplanar with the plane of benzene rings that contain C2–C7. The O3 atomic deviation is 0.394 (2) Å from the plane of benzene rings that contain C10–C15 and 0.703 (2) Å from the plane of benzene rings that contain C2–C7. The dihedral angel between the two planes of benzene rings is 10.15 (3)°.

The mean interplanar distance of 3.339 (2) Å between the plane of benzene rings that contain C2–C7 and 3.357 (3) Å between the plane of benzene rings that contain C10–C15 respectively suggests that the ligands are engaged in π–π stacking interactions with a offset face-to-face style. The molecular conformation is characterized by an N—H···O and C—H···O hydrogen bonds and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds(Fig. 2).

Experimental

4-fluorobenzoyl chloride (0.795 g, 5 mmol) and 2-hydroxy-4-methylbenzohydrazide (0.830 g, 5 mmol) were added to 30 ml of DMF solution with an external ice–water bath. When 0.607 g (6 mmol) of triethylamine was added, a white suspension immediately appeared. The suspension was then filtered. The left solution was volume reduced to about one-third on rotary evaporator. After 7 days crystals of the title compound were obtained from the left solution. Yield: 92.2%. Melting point: 217–226 °C. Calcd. for C15H13FN2O3: C, 62.50; H, 4.51; N, 9.72; Found: C, 62.24; H, 4.55; N, 9.65%

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å; N—H = 0.86 Å; O—H = 0.82 Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
A view of π–π stacking of (I) and H bonds.

Crystal data

C15H13FN2O3Z = 2
Mr = 288.27F(000) = 300
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Melting point = 490–499 K
a = 7.0969 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2994 (14) ÅCell parameters from 6530 reflections
c = 13.701 (3) Åθ = 1.6–27.6°
α = 102.854 (2)°µ = 0.11 mm1
β = 97.754 (3)°T = 296 K
γ = 105.538 (1)°Block, colourless
V = 652.2 (2) Å30.54 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII diffractometer2090 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 25.0°, θmin = 1.6°
Detector resolution: 0 pixels mm-1h = −8→8
ω scansk = −8→8
4591 measured reflectionsl = −16→16
2274 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.093P)2 + 0.2642P] where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.5146 (3)0.7327 (3)0.90895 (14)0.0382 (4)
H1A1.56880.62630.91160.057*
H1B1.48460.78240.97410.057*
H1C1.61050.83660.89310.057*
C21.3255 (2)0.6585 (2)0.82719 (12)0.0275 (4)
C31.1619 (2)0.7274 (2)0.83934 (12)0.0291 (4)
H3A1.16790.82110.89900.035*
C40.9911 (2)0.6566 (2)0.76276 (12)0.0256 (4)
H4A0.88390.70430.77220.031*
C51.3107 (2)0.5166 (2)0.73751 (12)0.0260 (4)
H5A1.41840.46960.72850.031*
C61.1384 (2)0.4435 (2)0.66103 (11)0.0227 (3)
C70.9748 (2)0.5153 (2)0.67156 (11)0.0215 (3)
C80.7818 (2)0.4502 (2)0.59554 (11)0.0210 (3)
C90.5611 (2)0.0444 (2)0.37524 (11)0.0225 (3)
C100.3744 (2)−0.0450 (2)0.29516 (12)0.0228 (4)
C110.3805 (2)−0.1729 (2)0.20387 (12)0.0292 (4)
H11A0.4995−0.19830.19480.035*
C120.1944 (2)−0.0106 (2)0.30968 (12)0.0258 (4)
H12A0.18920.07250.37080.031*
C130.0234 (2)−0.1002 (2)0.23314 (13)0.0298 (4)
H13A−0.0972−0.07860.24220.036*
C140.2107 (3)−0.2622 (3)0.12657 (13)0.0332 (4)
H14A0.2140−0.34650.06540.040*
C150.0363 (2)−0.2216 (2)0.14356 (13)0.0311 (4)
F−0.13083 (16)−0.30700 (16)0.06798 (8)0.0459 (3)
N10.76066 (18)0.30055 (19)0.51310 (10)0.0239 (3)
H1D0.85900.25500.50490.029*
N20.58263 (18)0.21862 (18)0.44102 (9)0.0223 (3)
H2A0.49160.27600.43860.027*
O11.12712 (16)0.30064 (17)0.57426 (8)0.0287 (3)
H1E1.18200.22230.58950.043*
O20.64816 (15)0.52694 (16)0.60736 (8)0.0270 (3)
O30.69450 (16)−0.03614 (17)0.38199 (9)0.0320 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0302 (9)0.0413 (10)0.0360 (9)0.0091 (8)−0.0048 (7)0.0057 (8)
C20.0260 (8)0.0262 (8)0.0273 (8)0.0051 (6)−0.0005 (6)0.0084 (6)
C30.0343 (9)0.0250 (8)0.0252 (8)0.0118 (7)0.0003 (7)0.0014 (6)
C40.0285 (8)0.0245 (8)0.0259 (8)0.0134 (6)0.0045 (6)0.0056 (6)
C50.0204 (8)0.0303 (8)0.0308 (8)0.0111 (6)0.0054 (6)0.0111 (7)
C60.0243 (7)0.0233 (7)0.0228 (7)0.0099 (6)0.0049 (6)0.0074 (6)
C70.0222 (8)0.0202 (7)0.0231 (8)0.0085 (6)0.0026 (6)0.0071 (6)
C80.0217 (7)0.0220 (7)0.0225 (7)0.0102 (6)0.0052 (6)0.0079 (6)
C90.0229 (8)0.0233 (8)0.0244 (7)0.0119 (6)0.0056 (6)0.0064 (6)
C100.0231 (8)0.0194 (7)0.0251 (8)0.0068 (6)0.0023 (6)0.0057 (6)
C110.0261 (8)0.0307 (9)0.0293 (8)0.0102 (7)0.0042 (6)0.0043 (7)
C120.0263 (8)0.0201 (7)0.0310 (8)0.0089 (6)0.0043 (6)0.0056 (6)
C130.0226 (8)0.0249 (8)0.0417 (9)0.0074 (6)0.0017 (7)0.0114 (7)
C140.0371 (9)0.0316 (9)0.0244 (8)0.0078 (7)0.0009 (7)0.0015 (7)
C150.0273 (8)0.0267 (8)0.0333 (9)0.0027 (6)−0.0064 (7)0.0107 (7)
F0.0361 (6)0.0447 (7)0.0410 (6)0.0040 (5)−0.0165 (5)0.0046 (5)
N10.0192 (6)0.0269 (7)0.0242 (7)0.0128 (5)−0.0015 (5)0.0011 (5)
N20.0184 (6)0.0238 (7)0.0241 (6)0.0112 (5)−0.0011 (5)0.0024 (5)
O10.0284 (6)0.0353 (6)0.0252 (6)0.0208 (5)0.0023 (4)0.0026 (5)
O20.0255 (6)0.0305 (6)0.0271 (6)0.0171 (5)0.0025 (4)0.0032 (5)
O30.0293 (6)0.0300 (6)0.0353 (6)0.0180 (5)−0.0014 (5)0.0004 (5)

Geometric parameters (Å, °)

C1—C21.511 (2)C9—N21.342 (2)
C1—H1A0.9601C9—C101.487 (2)
C1—H1B0.9601C10—C121.397 (2)
C1—H1C0.9601C10—C111.398 (2)
C2—C51.390 (2)C11—C141.388 (2)
C2—C31.399 (2)C11—H11A0.9300
C3—C41.385 (2)C12—C131.388 (2)
C3—H3A0.9300C12—H12A0.9300
C4—C71.401 (2)C13—C151.375 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.391 (2)C14—C151.385 (3)
C5—H5A0.9300C14—H14A0.9300
C6—O11.3732 (19)C15—F1.3614 (18)
C6—C71.407 (2)N1—N21.3875 (17)
C7—C81.494 (2)N1—H1D0.8600
C8—O21.2351 (18)N2—H2A0.8600
C8—N11.345 (2)O1—H1E0.8200
C9—O31.2451 (19)
C2—C1—H1A109.5O3—C9—C10122.26 (13)
C2—C1—H1B109.5N2—C9—C10117.42 (12)
H1A—C1—H1B109.5C12—C10—C11119.65 (14)
C2—C1—H1C109.5C12—C10—C9122.36 (14)
H1A—C1—H1C109.5C11—C10—C9117.95 (13)
H1B—C1—H1C109.5C14—C11—C10120.64 (15)
C5—C2—C3118.40 (14)C14—C11—H11A119.7
C5—C2—C1119.88 (15)C10—C11—H11A119.7
C3—C2—C1121.71 (15)C13—C12—C10120.17 (15)
C4—C3—C2120.21 (14)C13—C12—H12A119.9
C4—C3—H3A119.9C10—C12—H12A119.9
C2—C3—H3A119.9C15—C13—C12118.47 (15)
C3—C4—C7122.03 (14)C15—C13—H13A120.8
C3—C4—H4A119.0C12—C13—H13A120.8
C7—C4—H4A119.0C15—C14—C11117.78 (15)
C2—C5—C6121.48 (14)C15—C14—H14A121.1
C2—C5—H5A119.3C11—C14—H14A121.1
C6—C5—H5A119.3F—C15—C13118.40 (15)
O1—C6—C5120.01 (13)F—C15—C14118.34 (15)
O1—C6—C7119.48 (13)C13—C15—C14123.26 (15)
C5—C6—C7120.50 (14)C8—N1—N2121.02 (12)
C4—C7—C6117.33 (14)C8—N1—H1D119.5
C4—C7—C8116.67 (13)N2—N1—H1D119.5
C6—C7—C8125.97 (14)C9—N2—N1115.98 (12)
O2—C8—N1121.54 (13)C9—N2—H2A122.0
O2—C8—C7122.52 (13)N1—N2—H2A122.0
N1—C8—C7115.94 (12)C6—O1—H1E109.5
O3—C9—N2120.31 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.861.922.6224 (19)139.
O1—H1E···O3i0.821.882.7035 (18)177.
N2—H2A···O2ii0.862.112.9079 (19)154.
C4—H4A···O20.932.472.797 (2)101.

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2492).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
  • Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. pp. 4866–4871.
  • John, R. P., Lee, K. J., Kim, G. H., Suh, B. J., Rh, H. J. & Lah, M. S. (2005). Inorg. Chem.45, 7109–7121. [PubMed]
  • John, R. P., Park, J. J., Moon, D. Y., Lee, K. J. & Lah, M. S. (2006). Chem. Commun. pp. 3699–3701. [PubMed]
  • Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed.40, 1084–1087. [PubMed]
  • Majumder, A., Goswami, S., Batten, S. R., Fallah, M. S. E., Ribas, J. & Mitra, S. (2006). Inorg. Chim. Chem.359, 2375–2382.
  • Moon, D. Y., Lee, K. J., John, R. P., Kim, G. H., Suh, B. J. & Lah, M. S. (2006). Inorg. Chem.45, 7991–7993. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography