PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1952.
Published online 2008 September 17. doi:  10.1107/S1600536808029255
PMCID: PMC2959397

2-(Mesitylmethylsulfanyl)pyridine N-oxide monohydrate

Abstract

In the title compound, C15H17NOS·H2O, the benzene and pyridine rings form a dihedral angle of 71.18 (2)°. The intra­molecular S(...)O distance [2.737 (3) Å] is shorter than expected and, in terms of hybridization principles, the N—C—S angle [114.1 (2)°] is smaller than expected. The crystal structure is stabilized by inter­molecular O—H(...)O and weak C—H(...)O hydrogen bonds. In addition, weak π–π stacking inter­actions with a centroid–centroid distance of 3.778 (3) Å are also observed.

Related literature

For related structures, see: Jebas et al. (2005 [triangle]); Hartung et al. (1996 [triangle]); Ravindran Durai Nayagam et al. (2008 [triangle]). For biological activities of N-oxide derivatives, see: Bovin et al. (1992 [triangle]); Katsuyuki et al. (1991 [triangle]); Leonard et al. (1955 [triangle]); Lobana & Bhatia (1989 [triangle]); Symons & West (1985 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1952-scheme1.jpg

Experimental

Crystal data

  • C15H17NOS·H2O
  • M r = 277.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1952-efi1.jpg
  • a = 12.358 (7) Å
  • b = 15.404 (6) Å
  • c = 7.748 (5) Å
  • β = 106.40 (2)°
  • V = 1415.0 (13) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.01 mm−1
  • T = 193 (2) K
  • 0.50 × 0.20 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971 [triangle]) T min = 0.67, T max = 0.99 (expected range = 0.612–0.904)
  • 2896 measured reflections
  • 2684 independent reflections
  • 2048 reflections with I > 2σ(I)
  • R int = 0.067
  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.190
  • S = 1.06
  • 2684 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.79 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Dräger & Gattow, 1971 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029255/lh2692sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029255/lh2692Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

supplementary crystallographic information

Comment

N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in the 2 position display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N–oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam, et al., 2008). As an extension of our work, we report here the crystal structure of the title compound.

The asymmetric unit of (I), consists of one molecule 2-(1-oxo-2-pyridylsulfanylmethyl) mesitylene and a water molecule. The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides (Allen et al., 1987).

The pyridine ring and the benzene rings are essentially individually planar with the maximum deviation from planarity being 0.011 (2) Å for atom C2 and -0.010 (2) Å for atom C12 respectively. The dihedral angle formed by the benzene ring (C1–C6) and the pyridine ring (C12–C16/N17) is 71.18 (2)°. The atom O18 attached to atom N17 of the pyridine ring is essentially co-planar; the relevant torsion angle being O18—N17—C16—C15 = 178.9 (3)°.

The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds. In addition, π–π interactions with Cg1···Cg1i = 3.778 (3) Å (Cg1 is the centroid defined by ring atoms C12–C16/N17) [symmetry code:(i) 1-x,-y,1-z] are observed. As in the structure of 2-(1-phenyl-4-penten-l-yl-thio)pyridine N-oxide (Hartung et al., 1996) a short intramolecular S···O [2.737 (3) Å] distance is observed.

Experimental

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.149,1 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in acetone and water (1: 1v/v) and allowed to undergo slow evaporation. Colourless crystals were obtained after a week

Refinement

After checking for their presence in the Fourier map, all the hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms with the C—H = 0.95 Å (aromatic); C—H = 0.99 Å(methylene); C—H = 0.98 Å (methyl) and O—H = 0.84 Å with Uiso(H) in the range of 1.2Ueq(C)–1.5Ueq(C,O)methyl.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen bonds are shown as dashed lines.
Fig. 2.
Part of the crystal structure of the title compound, viewed along the b axis showing hydrogen bonds as dashed lines.

Crystal data

C15H17NOS·H2OF(000) = 592
Mr = 277.37Dx = 1.302 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.358 (7) Åθ = 36–50°
b = 15.404 (6) ŵ = 2.01 mm1
c = 7.748 (5) ÅT = 193 K
β = 106.40 (2)°Plate, colourless
V = 1415.0 (13) Å30.50 × 0.20 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2048 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.067
graphiteθmax = 70.0°, θmin = 3.7°
ω/2θ scansh = −14→15
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971)k = −18→0
Tmin = 0.67, Tmax = 0.99l = −9→0
2896 measured reflections3 standard reflections every 60 min
2684 independent reflections intensity decay: 3%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.1179P)2 + 0.1489P] where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.79 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0724 (3)−0.0867 (2)0.3741 (4)0.0305 (7)
C20.0757 (3)−0.1748 (2)0.4252 (4)0.0336 (7)
C3−0.0205 (3)−0.2249 (2)0.3573 (4)0.0375 (8)
H3−0.0199−0.28370.39460.045*
C4−0.1170 (3)−0.1924 (2)0.2377 (4)0.0376 (8)
C5−0.1186 (3)−0.1053 (2)0.1862 (4)0.0355 (7)
H5−0.1844−0.08180.10450.043*
C6−0.0247 (3)−0.05268 (19)0.2537 (4)0.0314 (7)
C70.1771 (3)−0.2149 (2)0.5531 (5)0.0469 (9)
H7A0.1954−0.18350.66780.070*
H7B0.2411−0.21170.50220.070*
H7C0.1612−0.27580.57330.070*
C8−0.2178 (4)−0.2507 (3)0.1647 (6)0.0561 (11)
H8A−0.2837−0.21530.10540.084*
H8B−0.2332−0.28330.26370.084*
H8C−0.2020−0.29130.07750.084*
C9−0.0327 (3)0.0412 (2)0.1961 (5)0.0379 (8)
H9A0.02470.05340.13410.057*
H9B−0.02020.07860.30220.057*
H9C−0.10780.05260.11440.057*
C100.1718 (3)−0.0290 (2)0.4538 (4)0.0354 (7)
H10A0.2203−0.05560.56530.042*
H10B0.14540.02800.48500.042*
S110.25245 (7)−0.01425 (5)0.29196 (10)0.0343 (3)
C120.3569 (3)0.05537 (19)0.4133 (4)0.0300 (7)
C130.3783 (3)0.0803 (2)0.5928 (4)0.0364 (7)
H130.33430.05670.66400.044*
C140.4623 (3)0.1386 (2)0.6672 (5)0.0454 (9)
H140.47650.15520.78970.054*
C150.5265 (3)0.1733 (2)0.5633 (6)0.0487 (9)
H150.58390.21470.61280.058*
C160.5057 (3)0.1469 (2)0.3886 (6)0.0446 (9)
H160.55010.16970.31710.053*
N170.4236 (2)0.08942 (17)0.3157 (4)0.0336 (6)
O180.4037 (2)0.06592 (17)0.1461 (3)0.0446 (6)
O1W0.6227 (3)0.0815 (2)0.0886 (4)0.0610 (8)
H1W0.55750.06900.09330.091*
H2W0.64950.03940.04520.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0458 (18)0.0265 (14)0.0256 (14)−0.0078 (13)0.0208 (14)−0.0057 (11)
C20.0497 (19)0.0286 (16)0.0288 (15)−0.0017 (14)0.0214 (14)−0.0011 (13)
C30.057 (2)0.0265 (15)0.0356 (17)−0.0102 (14)0.0246 (16)−0.0070 (13)
C40.0480 (19)0.0392 (17)0.0332 (16)−0.0162 (15)0.0239 (15)−0.0141 (14)
C50.0420 (18)0.0388 (18)0.0300 (16)−0.0035 (14)0.0171 (14)−0.0055 (13)
C60.0492 (19)0.0263 (15)0.0255 (14)−0.0026 (13)0.0217 (14)−0.0050 (12)
C70.058 (2)0.0377 (19)0.048 (2)0.0032 (17)0.0194 (18)0.0037 (16)
C80.062 (3)0.058 (2)0.055 (2)−0.030 (2)0.027 (2)−0.020 (2)
C90.060 (2)0.0264 (16)0.0334 (16)0.0007 (14)0.0230 (16)−0.0007 (12)
C100.0476 (19)0.0363 (16)0.0261 (15)−0.0109 (14)0.0167 (14)−0.0030 (13)
S110.0424 (5)0.0364 (5)0.0281 (4)−0.0087 (3)0.0164 (3)−0.0048 (3)
C120.0309 (15)0.0228 (14)0.0361 (16)0.0022 (12)0.0091 (13)0.0048 (12)
C130.0443 (18)0.0318 (16)0.0312 (16)0.0004 (14)0.0075 (14)0.0038 (13)
C140.046 (2)0.0403 (19)0.045 (2)0.0026 (16)0.0045 (17)−0.0067 (16)
C150.0396 (19)0.039 (2)0.068 (3)−0.0066 (15)0.0159 (18)−0.0110 (18)
C160.0367 (18)0.0357 (18)0.066 (2)−0.0061 (15)0.0230 (18)−0.0009 (17)
N170.0343 (14)0.0293 (13)0.0402 (15)0.0044 (11)0.0154 (12)0.0042 (11)
O180.0475 (15)0.0501 (15)0.0417 (14)−0.0042 (11)0.0213 (12)0.0012 (11)
O1W0.0589 (18)0.085 (2)0.0441 (15)−0.0134 (16)0.0233 (14)−0.0132 (15)

Geometric parameters (Å, °)

C1—C61.397 (5)C9—H9B0.9800
C1—C21.411 (4)C9—H9C0.9800
C1—C101.500 (4)C10—S111.823 (3)
C2—C31.390 (5)C10—H10A0.9900
C2—C71.494 (5)C10—H10B0.9900
C3—C41.381 (5)S11—C121.736 (3)
C3—H30.9500C12—N171.371 (4)
C4—C51.399 (5)C12—C131.394 (4)
C4—C81.509 (5)C13—C141.371 (5)
C5—C61.391 (5)C13—H130.9500
C5—H50.9500C14—C151.388 (6)
C6—C91.509 (4)C14—H140.9500
C7—H7A0.9800C15—C161.367 (6)
C7—H7B0.9800C15—H150.9500
C7—H7C0.9800C16—N171.345 (4)
C8—H8A0.9800C16—H160.9500
C8—H8B0.9800N17—O181.318 (4)
C8—H8C0.9800O1W—H1W0.8400
C9—H9A0.9800O1W—H2W0.8400
C6—C1—C2120.0 (3)C6—C9—H9B109.5
C6—C1—C10120.1 (3)H9A—C9—H9B109.5
C2—C1—C10119.9 (3)C6—C9—H9C109.5
C3—C2—C1118.3 (3)H9A—C9—H9C109.5
C3—C2—C7119.3 (3)H9B—C9—H9C109.5
C1—C2—C7122.4 (3)C1—C10—S11109.5 (2)
C4—C3—C2122.5 (3)C1—C10—H10A109.8
C4—C3—H3118.7S11—C10—H10A109.8
C2—C3—H3118.7C1—C10—H10B109.8
C3—C4—C5118.6 (3)S11—C10—H10B109.8
C3—C4—C8120.1 (3)H10A—C10—H10B108.2
C5—C4—C8121.3 (4)C12—S11—C1099.89 (16)
C6—C5—C4120.6 (3)N17—C12—C13118.1 (3)
C6—C5—H5119.7N17—C12—S11114.1 (2)
C4—C5—H5119.7C13—C12—S11127.8 (3)
C5—C6—C1120.0 (3)C14—C13—C12120.5 (3)
C5—C6—C9118.0 (3)C14—C13—H13119.7
C1—C6—C9122.0 (3)C12—C13—H13119.7
C2—C7—H7A109.5C13—C14—C15119.9 (4)
C2—C7—H7B109.5C13—C14—H14120.1
H7A—C7—H7B109.5C15—C14—H14120.1
C2—C7—H7C109.5C16—C15—C14118.8 (3)
H7A—C7—H7C109.5C16—C15—H15120.6
H7B—C7—H7C109.5C14—C15—H15120.6
C4—C8—H8A109.5N17—C16—C15121.4 (3)
C4—C8—H8B109.5N17—C16—H16119.3
H8A—C8—H8B109.5C15—C16—H16119.3
C4—C8—H8C109.5O18—N17—C16120.4 (3)
H8A—C8—H8C109.5O18—N17—C12118.2 (3)
H8B—C8—H8C109.5C16—N17—C12121.3 (3)
C6—C9—H9A109.5H1W—O1W—H2W109.5
C6—C1—C2—C3−2.0 (4)C6—C1—C10—S11−80.1 (3)
C10—C1—C2—C3176.0 (3)C2—C1—C10—S11101.9 (3)
C6—C1—C2—C7179.9 (3)C1—C10—S11—C12178.5 (2)
C10—C1—C2—C7−2.1 (5)C10—S11—C12—N17−170.9 (2)
C1—C2—C3—C42.3 (5)C10—S11—C12—C138.2 (3)
C7—C2—C3—C4−179.6 (3)N17—C12—C13—C141.3 (5)
C2—C3—C4—C5−1.5 (5)S11—C12—C13—C14−177.7 (3)
C2—C3—C4—C8178.3 (3)C12—C13—C14—C150.2 (5)
C3—C4—C5—C60.3 (5)C13—C14—C15—C16−1.3 (6)
C8—C4—C5—C6−179.5 (3)C14—C15—C16—N171.0 (6)
C4—C5—C6—C10.0 (4)C15—C16—N17—O18178.9 (3)
C4—C5—C6—C9−178.7 (3)C15—C16—N17—C120.5 (5)
C2—C1—C6—C50.9 (4)C13—C12—N17—O18179.9 (3)
C10—C1—C6—C5−177.1 (3)S11—C12—N17—O18−0.9 (4)
C2—C1—C6—C9179.5 (3)C13—C12—N17—C16−1.7 (5)
C10—C1—C6—C91.5 (4)S11—C12—N17—C16177.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O180.842.052.875 (4)165.
O1W—H2W···O18i0.842.172.869 (4)141.
C16—H16···O1W0.952.583.226 (6)125

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2692).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr.129, 145–150.
  • Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Hartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst C52, 2841–2844.
  • Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  • Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  • Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
  • Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  • Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst E64, o409. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans. pp. 379–381.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography