PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1326.
Published online 2008 September 27. doi:  10.1107/S160053680803033X
PMCID: PMC2959393

Poly[tris­(μ3-5-amino­isophthalato)diaqua­dicerium(III)]

Abstract

In the title complex, [Ce2(C8H5NO4)3(H2O)2]n, each Ce ion is in nine-coordinated environment. Eight O atoms from six ligands participate in coordination, in addition to one O atom from a water mol­ecule. Both carboxyl­ate groups from the ligands chelate the Ce atoms, forming two four-membered rings. The 5-amino­isophthalate ligands also bridge the Ce centers, forming a two-dimensional network, and O—H(...)O and N—H(...)O hydrogen bonds complete the structure.

Related literature

For general background, see: Rzaczynska & Belsky (1994 [triangle]); Daiguebonne et al. (2000 [triangle]); Wu et al. (2002a [triangle],b [triangle]); Liao et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1326-scheme1.jpg

Experimental

Crystal data

  • [Ce2(C8H5NO4)3(H2O)2]
  • M r = 853.66
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1326-efi1.jpg
  • a = 12.2360 (7) Å
  • b = 8.0600 (5) Å
  • c = 25.6700 (15) Å
  • V = 2531.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.63 mm−1
  • T = 298 (2) K
  • 0.21 × 0.20 × 0.19 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.516, T max = 0.545 (expected range = 0.474–0.501)
  • 11818 measured reflections
  • 2233 independent reflections
  • 2001 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.045
  • S = 1.04
  • 2233 reflections
  • 196 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803033X/bq2095sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803033X/bq2095Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People’s Republic of China.

supplementary crystallographic information

Comment

5-aminoisophthalic acid forms covalent bonds with metal ions, especially with transition metals through nitrogen atom of amino group as well as oxygen atoms of carboxylic groups (Wu et al., 2002a; Wu et al., 2002b; Liao et al., 2004) and with lanthanide ions as strong Pearsons acids through oxygen atoms of carboxylic groups (Rzaczynska et al., 1994). Carboxylic groups of acid have a great ability to form infinite connection with metal ions and remarkable versatility in adopting different modes of bonding-from unidendate, chelating and bridging, sometimes in more than one way in the same compound (Daiguebonne et al., 2000). In this paper, we present a title complex, (C24H19Ce2N3O14)n, (I), synthesized by a condensation reaction of 5-aminoisophthalic acid with cerous nitrate under the condition of high pressure.

The molecular structure of the title complex, (I), is shown in Fig.1. The ligands construct a floor-like layer by chelating and bridging metal ions. The carboxy groups link layers in η1,3 mode, thus resulting in one-dimension metal-channels along b-axis, and the water molecules coordinating with metal ions are pending in these channels.

Experimental

5-aminoisophthalic acid (0.3 mmol, 54.6 mg) and sodium hydroxide (0.3 mmol,12.5 mg) dissolved in 20 ml water, heated to boiled and then stop heating. Cerous nitrate hexahydrate (0.3 mmol,130.3 mg) dissolved in 5 ml water was mixed with the above solution, stirring for half an hour. Then transfer them into a 50 ml teflon reactor, under autogenous pressure at 160°C for 3 days and then cooled to room temperature, after which large brown block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H 0.93 (aromatic) 0.93, N—H 0.86 (amino), O—H 0.85 Å (water), withUiso(H) =1.2Ueq(C).

Figures

Fig. 1.
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Ce2(C8H5NO4)3(H2O)2]F(000) = 1648
Mr = 853.66Dx = 2.240 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2n 2abCell parameters from 3043 reflections
a = 12.2360 (7) Åθ = 2.3–28.4°
b = 8.0600 (5) ŵ = 3.63 mm1
c = 25.6700 (15) ÅT = 298 K
V = 2531.6 (3) Å3Block, brown
Z = 40.21 × 0.20 × 0.19 mm

Data collection

Siemens SMART CCD area-detector diffractometer2233 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→13
Tmin = 0.516, Tmax = 0.545k = −9→9
11818 measured reflectionsl = −30→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0208P)2 + 2.5416P] where P = (Fo2 + 2Fc2)/3
2233 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ce10.694451 (12)0.038178 (18)0.094984 (6)0.01318 (7)
H1A0.4903−0.12280.04870.016*
H1B0.4671−0.11400.09980.016*
N10.1463 (2)0.4699 (3)0.15158 (11)0.0302 (7)
H1C0.15310.41280.17970.036*
H1D0.10420.55340.15710.036*
N20.5000−0.7310 (4)0.25000.0418 (11)
H2A0.5462−0.78430.23110.050*
O10.53914 (15)0.2297 (2)0.12641 (8)0.0227 (5)
O20.62001 (17)0.4491 (3)0.09148 (8)0.0250 (5)
O30.38087 (15)0.8402 (2)−0.01169 (8)0.0220 (5)
O40.77549 (15)0.2778 (2)0.03332 (8)0.0204 (4)
O50.63242 (18)−0.0423 (2)0.18383 (9)0.0282 (5)
O60.70692 (16)−0.2648 (2)0.15024 (8)0.0232 (5)
O1W0.51934 (16)−0.1043 (3)0.07824 (9)0.0280 (5)
C10.4286 (2)0.4564 (3)0.09890 (11)0.0159 (6)
C20.4177 (2)0.5614 (3)0.05642 (12)0.0177 (6)
H20.47860.58850.03650.021*
C30.3163 (2)0.6262 (3)0.04351 (11)0.0174 (6)
C40.2262 (2)0.5922 (4)0.07468 (12)0.0179 (6)
H40.15760.63160.06520.021*
C50.2384 (2)0.4998 (3)0.11991 (12)0.0189 (6)
C60.3393 (2)0.4281 (3)0.13138 (12)0.0182 (6)
H60.34690.36130.16070.022*
C70.5365 (2)0.3728 (3)0.10682 (11)0.0164 (6)
C80.3065 (2)0.7357 (3)−0.00284 (12)0.0173 (6)
C90.5727 (2)−0.2982 (3)0.21853 (11)0.0171 (6)
C100.5748 (2)−0.4714 (3)0.21935 (12)0.0205 (6)
H100.6261−0.52830.19950.025*
C110.5000−0.5599 (5)0.25000.0212 (9)
C120.5000−0.2132 (5)0.25000.0176 (9)
H120.5000−0.09780.25000.021*
C130.6425 (2)−0.1977 (3)0.18270 (11)0.0165 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ce10.01069 (10)0.01242 (10)0.01642 (12)−0.00009 (6)−0.00036 (6)0.00135 (6)
N10.0194 (14)0.0396 (16)0.0314 (18)0.0059 (12)0.0102 (12)0.0138 (13)
N20.070 (3)0.0152 (19)0.040 (3)0.0000.030 (2)0.000
O10.0200 (10)0.0169 (10)0.0311 (13)0.0053 (8)0.0002 (9)0.0026 (9)
O20.0132 (11)0.0306 (12)0.0314 (14)−0.0012 (9)0.0007 (9)0.0030 (10)
O30.0243 (11)0.0195 (11)0.0224 (12)−0.0062 (9)−0.0041 (9)0.0065 (9)
O40.0179 (10)0.0227 (11)0.0205 (11)−0.0003 (8)−0.0036 (9)0.0016 (9)
O50.0395 (13)0.0170 (11)0.0280 (13)0.0005 (9)0.0133 (11)0.0036 (9)
O60.0235 (11)0.0225 (9)0.0236 (12)0.0025 (9)0.0101 (9)0.0048 (8)
O1W0.0187 (11)0.0323 (12)0.0329 (13)−0.0066 (10)0.0010 (10)−0.0076 (11)
C10.0136 (14)0.0137 (14)0.0204 (16)−0.0002 (11)−0.0011 (11)−0.0010 (12)
C20.0151 (14)0.0154 (14)0.0226 (16)−0.0004 (11)0.0026 (13)−0.0014 (12)
C30.0194 (15)0.0126 (14)0.0201 (16)−0.0010 (11)−0.0020 (12)−0.0016 (12)
C40.0135 (13)0.0178 (14)0.0223 (16)0.0017 (12)−0.0013 (12)−0.0024 (13)
C50.0140 (14)0.0195 (14)0.0233 (17)0.0003 (12)0.0011 (13)0.0001 (13)
C60.0155 (14)0.0168 (14)0.0225 (17)0.0002 (11)−0.0007 (13)0.0032 (12)
C70.0132 (14)0.0191 (15)0.0168 (15)−0.0005 (12)−0.0013 (12)−0.0024 (13)
C80.0186 (14)0.0156 (14)0.0176 (16)0.0047 (12)−0.0009 (12)−0.0033 (12)
C90.0185 (14)0.0173 (14)0.0155 (15)−0.0003 (11)0.0017 (12)0.0005 (12)
C100.0255 (16)0.0184 (14)0.0176 (16)0.0040 (12)0.0050 (14)−0.0020 (13)
C110.032 (2)0.015 (2)0.016 (2)0.0000.0031 (19)0.000
C120.021 (2)0.016 (2)0.016 (2)0.0000.0012 (17)0.000
C130.0162 (14)0.0189 (14)0.0144 (15)−0.0002 (12)0.0001 (12)−0.0004 (12)

Geometric parameters (Å, °)

Ce1—O2i2.383 (2)O6—Ce1i2.448 (2)
Ce1—O6ii2.448 (2)O1W—H1A0.8500
Ce1—O1W2.469 (2)O1W—H1B0.8500
Ce1—O52.490 (2)C1—C21.387 (4)
Ce1—O3iii2.5263 (19)C1—C61.393 (4)
Ce1—O12.5779 (19)C1—C71.496 (4)
Ce1—O4i2.654 (2)C2—C31.387 (4)
Ce1—O42.6870 (19)C2—H20.9300
Ce1—O62.828 (2)C3—C41.389 (4)
Ce1—C8iii2.986 (3)C3—C81.486 (4)
N1—C51.410 (4)C4—C51.387 (4)
N1—H1C0.8600C4—H40.9300
N1—H1D0.8599C5—C61.395 (4)
N2—C111.379 (5)C6—H60.9300
N2—H2A0.8600C8—O4iii1.276 (3)
O1—C71.258 (3)C8—Ce1iii2.986 (3)
O2—C71.256 (3)C9—C121.384 (3)
O2—Ce1ii2.383 (2)C9—C101.396 (4)
O3—C81.261 (3)C9—C131.494 (4)
O3—Ce1iii2.5263 (19)C10—C111.402 (3)
O4—C8iii1.276 (3)C10—H100.9300
O4—Ce1ii2.654 (2)C11—C10iv1.402 (3)
O5—C131.259 (3)C12—C9iv1.384 (3)
O6—C131.268 (3)C12—H120.9300
O2i—Ce1—O6ii75.39 (7)C8iii—O4—Ce1ii122.81 (17)
O2i—Ce1—O1W132.85 (7)C8iii—O4—Ce190.56 (16)
O6ii—Ce1—O1W146.17 (7)Ce1ii—O4—Ce1105.55 (7)
O2i—Ce1—O5104.28 (7)C13—O5—Ce1102.02 (18)
O6ii—Ce1—O577.79 (7)C13—O6—Ce1i164.58 (18)
O1W—Ce1—O576.92 (7)C13—O6—Ce185.86 (16)
O2i—Ce1—O3iii115.63 (7)Ce1i—O6—Ce1107.23 (7)
O6ii—Ce1—O3iii114.74 (6)Ce1—O1W—H1A126.9
O1W—Ce1—O3iii73.53 (7)Ce1—O1W—H1B125.6
O5—Ce1—O3iii139.93 (7)H1A—O1W—H1B104.5
O2i—Ce1—O1153.47 (7)C2—C1—C6119.7 (3)
O6ii—Ce1—O178.08 (6)C2—C1—C7117.8 (3)
O1W—Ce1—O172.14 (7)C6—C1—C7122.5 (2)
O5—Ce1—O169.18 (7)C3—C2—C1120.2 (3)
O3iii—Ce1—O176.33 (7)C3—C2—H2119.9
O2i—Ce1—O4i66.87 (7)C1—C2—H2119.9
O6ii—Ce1—O4i142.22 (6)C2—C3—C4119.9 (3)
O1W—Ce1—O4i69.43 (6)C2—C3—C8119.1 (2)
O5—Ce1—O4i112.50 (6)C4—C3—C8121.0 (2)
O3iii—Ce1—O4i81.52 (6)C5—C4—C3120.2 (3)
O1—Ce1—O4i139.66 (6)C5—C4—H4119.9
O2i—Ce1—O480.95 (6)C3—C4—H4119.9
O6ii—Ce1—O472.12 (7)C4—C5—C6119.6 (3)
O1W—Ce1—O4123.51 (7)C4—C5—N1119.3 (3)
O5—Ce1—O4147.09 (6)C6—C5—N1121.0 (3)
O3iii—Ce1—O449.99 (6)C1—C6—C5120.0 (3)
O1—Ce1—O491.49 (6)C1—C6—H6120.0
O4i—Ce1—O499.54 (6)C5—C6—H6120.0
O2i—Ce1—O672.98 (6)O2—C7—O1123.6 (3)
O6ii—Ce1—O6104.06 (7)O2—C7—C1117.1 (2)
O1W—Ce1—O674.48 (7)O1—C7—C1119.3 (2)
O5—Ce1—O648.09 (6)O3—C8—O4iii120.9 (3)
O3iii—Ce1—O6141.19 (6)O3—C8—C3118.9 (2)
O1—Ce1—O6113.57 (6)O4iii—C8—C3120.2 (2)
O4i—Ce1—O666.99 (6)O3—C8—Ce1iii56.79 (15)
O4—Ce1—O6153.67 (5)O4iii—C8—Ce1iii64.13 (15)
O2i—Ce1—C8iii99.07 (7)C3—C8—Ce1iii175.47 (19)
O6ii—Ce1—C8iii93.72 (7)C12—C9—C10119.9 (3)
O1W—Ce1—C8iii98.21 (7)C12—C9—C13117.3 (3)
O5—Ce1—C8iii152.07 (7)C10—C9—C13122.8 (3)
O3iii—Ce1—C8iii24.68 (7)C9—C10—C11120.4 (3)
O1—Ce1—C8iii83.09 (7)C9—C10—H10119.8
O4i—Ce1—C8iii90.61 (7)C11—C10—H10119.8
O4—Ce1—C8iii25.31 (6)N2—C11—C10iv120.60 (18)
O6—Ce1—C8iii157.60 (7)N2—C11—C10120.60 (18)
C5—N1—H1C119.9C10iv—C11—C10118.8 (4)
C5—N1—H1D116.1C9iv—C12—C9120.6 (4)
H1C—N1—H1D109.7C9iv—C12—H12119.7
C11—N2—H2A120.0C9—C12—H12119.7
C7—O1—Ce1116.27 (17)O5—C13—O6120.0 (3)
C7—O2—Ce1ii155.62 (19)O5—C13—C9118.0 (2)
C8—O3—Ce1iii98.53 (17)O6—C13—C9121.9 (2)

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+3/2, y+1/2, z; (iii) −x+1, −y+1, −z; (iv) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O5v0.862.633.436 (3)157.
N1—H1D···O1vi0.862.393.154 (3)148.
O1W—H1A···O3v0.852.072.898 (3)165.

Symmetry codes: (v) x, y−1, z; (vi) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2095).

References

  • Daiguebonne, C., Guillou, O. & Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161–169.
  • Liao, Q.-X., Li, Z.-J., Zhang, J., Kang, Y., Dai, Y.-M. & Yao, Y.-G. (2004). Acta Cryst. C60, m509–m511. [PubMed]
  • Rzaczynska, Z. & Belsky, V. K. (1994). Pol. J. Chem.68, 309–312.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem.41, 5636–5637. [PubMed]
  • Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem., 628, 1935–1937.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography