PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1293–m1294.
Published online 2008 September 20. doi:  10.1107/S1600536808029450
PMCID: PMC2959390

Tetra­aquabis­(2-sulfamoylbenzoato)manganese(II)

Abstract

In the title compound, [Mn(C7H6NO4S)2(H2O)4], the Mn atom, lying on an inversion center, exhibits a distorted octa­hedral coordination by six O atoms, two from carboxyl­ate groups and four from water mol­ecules. The SO2NH2 group is involved in a three dimensional polymeric hydrogen bonding network along with the water mol­ecules. π-Stacking inter­actions parallel to the c axis lead to a separation of 4.0050 (12) Å between the centroids of the benzene rings.

Related literature

For related literature, see: Allen (2002 [triangle]); Aurengzeb et al. (1994 [triangle]); Eltayeb et al. (2008 [triangle]); Hulme et al. (1997 [triangle]); Siddiqui et al. (2007 [triangle], 2008 [triangle]); Tahir et al. (1997 [triangle]); Zhang & Janiak (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1293-scheme1.jpg

Experimental

Crystal data

  • [Mn(C7H6NO4S)2(H2O)4]
  • M r = 527.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1293-efi1.jpg
  • a = 15.2442 (4) Å
  • b = 8.2835 (2) Å
  • c = 7.9188 (2) Å
  • β = 99.971 (1)°
  • V = 984.85 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 296 (2) K
  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker KAPPA APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.840, T max = 0.895
  • 10903 measured reflections
  • 2445 independent reflections
  • 2174 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.106
  • S = 1.05
  • 2445 reflections
  • 148 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029450/fj2154sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029450/fj2154Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the diffractometer at GCU, Lahore.

supplementary crystallographic information

Comment

The coordination chemistry of manganese in various oxidation states and in different combinations of donar environments like nitrogen and oxygen has been extensively investigated. The manganese complexes with Schiff base ligands have attracted considerable interest in the past decades and recently, due to their importance and variety of applications in chemistry, biology, physics and advanced materials (Eltayeb et al., 2008). One class of high-valent manganese complexes receiving considerable attention is of those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1994; Hulme et al., 1997; Zhang et al., 2001). In continuation to the synthesis of benzene sulfonamide derivatives (Siddiqui et al., 2008), we are also interested in the complexation of these ligands with human friendly transition metals. The title complex (I) is being reported in this context.

The CCDC search (Allen, 2002) showed that no crystal structure has been reported of manganese with sulfamoylbenzoate. The complexation of the Mn(II) with o-sulfamoylbenzoate confirmed that there is no coordination of SO2NH2 group. The Mn(II) is hexa-coordinated (Table 1) through carboxylate group (Fig 1) and four water molecules, whereas SO2NH2 is involved in the three dimensional network of H-bonding (Table 2). The Title compound (I) has shown a typical coordination geometry as is seen in most of the transition metal complexes (Tahir et al., 1997) with monoanionic carboxylate ligands in the aqueous media. There exists a three dimensional polymeric network due to intra as well as intermolecular H-bonding. The molecules are further stabilized due to π-π-interaction at a distance of 4.0050 (12) Å, between the centroids of the benzene ring Cg···Cgi [symmetry code: i = x, 3/2 - y, -1/2 + z].

Experimental

A suspension of (1.0 g, 5.0 mmol) o-sulfamoyl benzoic acid (Siddiqui et al., 2007), manganese acetate tetrahydrate (0.6 g, 2.5 mmol) and sodium carbonate (0.3 g, 2.5 mmol) was subjected to reflux in aqueous methanol (50%, 50 ml) for 4 h. The volume of the reaction mixture was reduced to half on rotary evaporator (11 torr) at room temperature and its pH was adjusted to 6 using hydrochloric acid (15%). The reaction mixture was then kept in ice-bath for 2 h. The off-white crystals were filtered, washed with cold distilled water and dried at room temperature. The product was recrystallized at 313 K from aqueous methanol to obtain colorless crystals.

m.p 498–503 K.

Figures

Fig. 1.
ORTEP drawing of the title compound, C14H20MnN2O12S2, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonds are shown by dotted ...
Fig. 2.
The packing figure (PLATON: Spek, 2003) which shows the three dimensional polymeric network through H-bonding. The H-atoms of benzene ring are not shown for clarity.

Crystal data

[Mn(C7H6NO4S)2(H2O)4]F(000) = 542
Mr = 527.38Dx = 1.778 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2445 reflections
a = 15.2442 (4) Åθ = 1.4–28.3°
b = 8.2835 (2) ŵ = 0.95 mm1
c = 7.9188 (2) ÅT = 296 K
β = 99.971 (1)°Prismatic, colourless
V = 984.85 (4) Å30.20 × 0.15 × 0.12 mm
Z = 2

Data collection

Bruker KAPPA APEXII CCD diffractometer2445 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 1.4°
ω scansh = −20→20
Absorption correction: multi-scan (SADABS; Bruker, 2007)k = −11→7
Tmin = 0.840, Tmax = 0.895l = −10→8
10903 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0727P)2 + 0.2877P] where P = (Fo2 + 2Fc2)/3
2445 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.000001.000000.000000.0202 (1)
S10.26720 (3)0.44810 (6)0.04336 (6)0.0258 (1)
O10.13332 (8)0.92172 (17)0.01231 (17)0.0292 (4)
O20.13202 (9)0.68245 (19)0.1401 (2)0.0399 (4)
O30.19410 (10)0.46089 (19)−0.09625 (18)0.0352 (4)
O40.33501 (10)0.33230 (18)0.0254 (2)0.0415 (5)
O50.00686 (10)0.99300 (17)0.28706 (18)0.0334 (4)
O60.05852 (9)1.23701 (17)0.0481 (2)0.0411 (5)
N10.22897 (12)0.3966 (2)0.2145 (2)0.0324 (5)
C10.26985 (10)0.7841 (2)0.0847 (2)0.0213 (4)
C20.31781 (10)0.6410 (2)0.0774 (2)0.0226 (4)
C30.41025 (11)0.6438 (3)0.0899 (3)0.0330 (5)
C40.45577 (12)0.7888 (3)0.1114 (3)0.0407 (7)
C50.40934 (13)0.9313 (3)0.1195 (3)0.0363 (6)
C60.31757 (12)0.9290 (2)0.1056 (2)0.0275 (5)
C70.16968 (10)0.7939 (2)0.0780 (2)0.0224 (4)
H30.441300.547920.083740.0395*
H40.517410.790500.120510.0488*
H50.439861.028860.134170.0436*
H5A0.060461.016460.334530.0400*
H5B−0.034441.075960.310530.0400*
H60.287071.025660.110380.0330*
H6A0.027841.310740.106100.0493*
H6B0.114781.246150.082460.0493*
H110.2043 (19)0.467 (4)0.248 (3)0.0389*
H120.2695 (16)0.353 (3)0.288 (3)0.0389*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0192 (2)0.0176 (2)0.0239 (2)0.0011 (1)0.0040 (1)0.0001 (1)
S10.0248 (2)0.0198 (3)0.0320 (2)−0.0007 (2)0.0028 (2)−0.0006 (2)
O10.0223 (6)0.0287 (7)0.0359 (7)0.0066 (5)0.0028 (5)0.0026 (5)
O20.0246 (6)0.0393 (8)0.0591 (9)0.0024 (6)0.0169 (6)0.0163 (7)
O30.0339 (7)0.0389 (8)0.0303 (7)−0.0078 (6)−0.0011 (5)−0.0005 (6)
O40.0396 (8)0.0245 (7)0.0612 (10)0.0071 (6)0.0114 (7)−0.0040 (7)
O50.0280 (7)0.0441 (9)0.0276 (7)0.0002 (5)0.0035 (5)−0.0005 (5)
O60.0301 (7)0.0257 (7)0.0684 (10)−0.0049 (6)0.0112 (6)−0.0081 (7)
N10.0351 (9)0.0273 (9)0.0343 (8)−0.0006 (7)0.0046 (7)0.0067 (7)
C10.0197 (7)0.0219 (8)0.0224 (7)0.0007 (6)0.0037 (5)0.0033 (6)
C20.0185 (7)0.0216 (8)0.0274 (8)−0.0005 (6)0.0030 (6)0.0009 (6)
C30.0199 (8)0.0326 (10)0.0461 (10)0.0038 (7)0.0049 (7)0.0028 (8)
C40.0189 (8)0.0454 (13)0.0571 (13)−0.0060 (8)0.0050 (8)0.0049 (10)
C50.0304 (9)0.0318 (11)0.0460 (11)−0.0121 (8)0.0045 (8)0.0016 (9)
C60.0287 (8)0.0223 (9)0.0313 (9)−0.0013 (7)0.0045 (7)0.0011 (7)
C70.0195 (7)0.0248 (8)0.0232 (7)0.0035 (6)0.0042 (5)−0.0023 (6)

Geometric parameters (Å, °)

Mn1—O12.1194 (13)O6—H6B0.8600
Mn1—O52.2582 (14)N1—H110.77 (3)
Mn1—O62.1628 (14)N1—H120.85 (2)
Mn1—O1i2.1194 (13)C1—C71.521 (2)
Mn1—O5i2.2582 (14)C1—C21.399 (2)
Mn1—O6i2.1628 (14)C1—C61.398 (2)
S1—O31.4313 (15)C2—C31.396 (2)
S1—O41.4352 (16)C3—C41.383 (3)
S1—N11.6223 (17)C4—C51.384 (3)
S1—C21.7746 (17)C5—C61.384 (3)
O1—C71.265 (2)C3—H30.9300
O2—C71.234 (2)C4—H40.9300
O5—H5A0.8600C5—H50.9300
O5—H5B0.9700C6—H60.9300
O6—H6A0.9400
S1···O23.0246 (16)O4···H6ii2.7600
S1···H6Bii2.9200O4···H32.4000
O1···O53.202 (2)O4···H4xi2.8900
O1···O62.883 (2)O5···H6Av1.8500
O1···O6i3.1663 (19)O6···H5A2.9100
O1···O5i2.989 (2)O6···H5Aix2.6500
O1···O3iii3.228 (2)O6···H5Bix2.6500
O1···O2iv3.068 (2)N1···O22.799 (2)
O2···O1iii3.068 (2)N1···O6ii3.008 (2)
O2···N12.799 (2)N1···H6Bii2.2500
O2···O6i3.099 (2)C6···O4viii3.420 (2)
O2···S13.0246 (16)C6···O3iii3.389 (2)
O2···O32.895 (2)C7···O3iii3.254 (2)
O2···O5v2.775 (2)C7···O33.135 (2)
O3···C73.135 (2)C3···H5xii3.0300
O3···O5iv2.869 (2)C6···H12iv3.08 (2)
O3···O6ii3.136 (2)C7···H113.03 (3)
O3···C6iv3.389 (2)C7···H5Bv2.9900
O3···O1iv3.228 (2)H3···O42.4000
O3···C7iv3.254 (2)H3···H3xi2.5300
O3···O22.895 (2)H4···O4xi2.8900
O4···C6ii3.420 (2)H5···C3xiii3.0300
O5···O6v2.765 (2)H5A···H6Av2.2700
O5···O1i2.989 (2)H5A···O3iii2.0200
O5···O62.967 (2)H5A···O6vi2.6500
O5···O6vi3.055 (2)H5B···O2vii1.8300
O5···O2vii2.775 (2)H5B···C7vii2.9900
O5···O13.202 (2)H5B···H6Av2.2900
O5···O3iii2.869 (2)H5B···O6vi2.6500
O6···O5vii2.765 (2)H5B···H6Avi2.5500
O6···O3viii3.136 (2)H6···O12.4900
O6···O52.967 (2)H6···O4viii2.7600
O6···O1i3.1663 (19)H6A···O5vii1.8500
O6···O2i3.099 (2)H6A···H5Avii2.2700
O6···N1viii3.008 (2)H6A···H5Bvii2.2900
O6···O5ix3.055 (2)H6A···O2i2.8500
O6···O12.883 (2)H6A···H5Bix2.5500
O1···H62.4900H6B···S1viii2.9200
O1···H6B2.7700H6B···O3viii2.6900
O1···H11iv2.68 (3)H6B···N1viii2.2500
O1···H5Bi2.7300H6B···H11viii2.5100
O2···H112.19 (3)H11···O22.19 (3)
O2···H5Bv1.8300H11···C73.03 (3)
O2···H6Ai2.8500H11···H6Bii2.5100
O3···H6Bii2.6900H11···O1iii2.68 (3)
O3···H5Aiv2.0200H12···O4xiv2.50 (2)
O4···H12x2.50 (2)H12···C6iii3.08 (2)
O1—Mn1—O593.95 (5)Mn1—O6—H6A117.00
O1—Mn1—O684.64 (5)H6A—O6—H6B110.00
O1—Mn1—O1i180.00S1—N1—H12111.1 (16)
O1—Mn1—O5i86.05 (5)S1—N1—H11111 (2)
O1—Mn1—O6i95.36 (5)H11—N1—H12115 (2)
O5—Mn1—O684.27 (5)C2—C1—C6117.85 (15)
O1i—Mn1—O586.05 (5)C2—C1—C7124.92 (14)
O5—Mn1—O5i180.00C6—C1—C7117.19 (15)
O5—Mn1—O6i95.73 (5)S1—C2—C1123.55 (12)
O1i—Mn1—O695.36 (5)S1—C2—C3115.65 (14)
O5i—Mn1—O695.73 (5)C1—C2—C3120.76 (17)
O6—Mn1—O6i180.00C2—C3—C4120.1 (2)
O1i—Mn1—O5i93.95 (5)C3—C4—C5119.80 (18)
O1i—Mn1—O6i84.64 (5)C4—C5—C6120.2 (2)
O5i—Mn1—O6i84.27 (5)C1—C6—C5121.27 (17)
O3—S1—O4116.79 (9)O2—C7—C1118.68 (15)
O3—S1—N1108.69 (9)O1—C7—O2126.13 (15)
O3—S1—C2108.09 (9)O1—C7—C1115.15 (14)
O4—S1—N1106.03 (9)C2—C3—H3120.00
O4—S1—C2108.37 (8)C4—C3—H3120.00
N1—S1—C2108.63 (8)C3—C4—H4120.00
Mn1—O1—C7128.58 (11)C5—C4—H4120.00
H5A—O5—H5B111.00C4—C5—H5120.00
Mn1—O5—H5B105.00C6—C5—H5120.00
Mn1—O5—H5A108.00C1—C6—H6119.00
Mn1—O6—H6B120.00C5—C6—H6119.00
O5—Mn1—O1—C757.48 (15)C7—C1—C2—S14.8 (2)
O6—Mn1—O1—C7141.35 (15)C7—C1—C2—C3−177.97 (17)
O5i—Mn1—O1—C7−122.52 (15)C2—C1—C6—C5−0.3 (2)
O6i—Mn1—O1—C7−38.65 (15)C7—C1—C6—C5177.57 (17)
O3—S1—C2—C146.54 (16)C2—C1—C7—O1−150.20 (16)
O3—S1—C2—C3−130.87 (15)C2—C1—C7—O232.0 (2)
O4—S1—C2—C1174.00 (14)C6—C1—C7—O132.1 (2)
O4—S1—C2—C3−3.41 (17)C6—C1—C7—O2−145.67 (16)
N1—S1—C2—C1−71.23 (16)S1—C2—C3—C4178.11 (17)
N1—S1—C2—C3111.36 (16)C1—C2—C3—C40.6 (3)
Mn1—O1—C7—O24.9 (3)C2—C3—C4—C5−0.4 (3)
Mn1—O1—C7—C1−172.72 (10)C3—C4—C5—C6−0.2 (3)
C6—C1—C2—S1−177.56 (12)C4—C5—C6—C10.6 (3)
C6—C1—C2—C3−0.3 (2)

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y−1, z; (iii) x, −y+3/2, z+1/2; (iv) x, −y+3/2, z−1/2; (v) −x, y−1/2, −z+1/2; (vi) x, −y+5/2, z+1/2; (vii) −x, y+1/2, −z+1/2; (viii) x, y+1, z; (ix) x, −y+5/2, z−1/2; (x) x, −y+1/2, z−1/2; (xi) −x+1, −y+1, −z; (xii) −x+1, y−1/2, −z+1/2; (xiii) −x+1, y+1/2, −z+1/2; (xiv) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iii0.862.022.869 (2)167
O5—H5B···O2vii0.971.832.775 (2)164
O6—H6A···O5vii0.941.852.765 (2)164
O6—H6B···N1viii0.862.253.008 (2)148
N1—H11···O20.77 (3)2.19 (3)2.799 (2)137 (2)
N1—H12···O4xiv0.85 (2)2.50 (2)3.300 (2)157 (2)
C3—H3···O40.932.402.834 (3)108

Symmetry codes: (iii) x, −y+3/2, z+1/2; (vii) −x, y+1/2, −z+1/2; (viii) x, y+1, z; (xiv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2154).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Aurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m124–m125. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o367–o371. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4117.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179.
  • Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography