PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2046.
Published online 2008 September 30. doi:  10.1107/S1600536808029711
PMCID: PMC2959389

6-Formyl-2-meth­oxy-3-nitro­phenyl 4-toluene­sulfonate

Abstract

In the title compound, C15H13NO7S, the inter­planar angle between the two aromatic rings is 26.04 (3)°. The crystal structure is stabilized by C—H(...)O interactions.

Related literature

For general background, see: Alford et al. (1991 [triangle]); Baldessarini (1987 [triangle]); Jiang et al. (1990 [triangle]); Spungin et al. (1992 [triangle]); Tharakan et al. (1992 [triangle]); Yachi et al. (1989 [triangle]). For related structures, see: Ramachandran et al. (2007 [triangle]); Ramachandran, Kanakam & Manivannan (2008 [triangle]); Ramachandran, Kanakam, Gunasekaran & Manivannan (2008 [triangle]); Ramachandran, Suresh, Chakkaravarthi et al. (2008 [triangle]); Manivannan et al. (2005a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2046-scheme1.jpg

Experimental

Crystal data

  • C15H13NO7S
  • M r = 351.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2046-efi1.jpg
  • a = 8.1883 (16) Å
  • b = 9.5511 (19) Å
  • c = 10.530 (2) Å
  • α = 86.022 (3)°
  • β = 87.294 (3)°
  • γ = 73.588 (3)°
  • V = 787.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 298 (2) K
  • 0.42 × 0.32 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.905, T max = 0.951
  • 9176 measured reflections
  • 3647 independent reflections
  • 2897 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.129
  • S = 1.02
  • 3647 reflections
  • 223 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029711/bx2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029711/bx2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Several compounds containing p-toluene sulfonate (PTS) moiety were used in the fields of biology and industry. The merging of lipids can be monitored using derivatives of p-toluene sulfonates (Yachi, et al., 1989). This method has been used in studying the membrane fusion during the acrosome reaction (Spungin, et al., 1992). PTS are used to purify human coagulation factor (Tharakan, et al., 1992) in the study of viruses (Alford, et al., 1991) and in the development of technology for linking photosensitizer to a model of monoclonal antibody (Jiang, et al., 1990). In the field of pharmacology for the study of neuro pharmacology of s-adenosyl –L– methionine, PTS is used (Baldessarini, 1987). Because of the wide variety of biological importance of PTS, the synthesis of several substituted sulfonates and the study of their single-crystal XRD studies continues to be an interesting field of research. In the present paper, the synthesis and characterization by single-crystal study of the title compound is reported. In the title compound, the dihedral angle between the two aromatic rings is 26.04 (3)°.The geometric parameters agree with the reported values of similar structures (Manivannan et al., 2005a, b; Ramachandran et al., 2007). The angle between the O7—S1—O6 is 119.12 (11)°, which is greater than the tetrahedral angle, leading to the decrease in the O5—S1—C9 angle which is 97.9 (8)°. The eclipsed conformation of the sulfonyl moiety is confirmed by the torsion angle of O7—S1—C9—C14 = -19.3 (3)° and O6—S1—C9—C10 = 26.04 (19)°. The crystal packing is stabilized by Van der Waals interaction.

Experimental

Acetylation of vanillin with acetic anhydride in presence of sodium acetate yielded acetyl vanillin. Powdered o-vanillin acetate was added to a stirred mixture of fuming HNO3 and concentrate H2SO4. The nitrated material was then hydrolyzed in 2% sodium hydroxide. The orange yellow solid was filtered and the filtrate was acidified to get the 4-nitro-2-hydroxy-3methoxy benzaldehyde. The benzaldehyde and triethylamine were dissolved in acetone and treated with 4-toluene sulfonyl chloride. The residue obtained was washed with 2% aqueous triethylamine solution to obtain the crude product. Diffraction quality crystals were obtained by recrystallizing the crude product from ethanol.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
ORTEP of the molecule with atoms represented as 30% probability ellipsoids.

Crystal data

C15H13NO7SZ = 2
Mr = 351.32F(000) = 364
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1883 (16) ÅCell parameters from 873 reflections
b = 9.5511 (19) Åθ = 2.6–26.3°
c = 10.530 (2) ŵ = 0.24 mm1
α = 86.022 (3)°T = 298 K
β = 87.294 (3)°Block, yellow
γ = 73.588 (3)°0.42 × 0.32 × 0.21 mm
V = 787.8 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3647 independent reflections
Radiation source: fine-focus sealed tube2897 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −10→10
Tmin = 0.905, Tmax = 0.951k = −12→12
9176 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0677P)2 + 0.1932P] where P = (Fo2 + 2Fc2)/3
3647 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7558 (2)−0.10359 (19)0.96696 (18)0.0478 (4)
C20.6751 (2)−0.1421 (2)1.0781 (2)0.0538 (5)
H20.6431−0.22841.08390.065*
C30.6428 (2)−0.0544 (2)1.1783 (2)0.0562 (5)
H30.5877−0.08011.25170.067*
C40.6923 (2)0.0729 (2)1.17052 (18)0.0517 (4)
C50.7671 (2)0.12023 (18)1.06001 (18)0.0456 (4)
C60.7967 (2)0.02845 (18)0.95936 (17)0.0426 (4)
C70.7991 (3)−0.2053 (2)0.8626 (2)0.0658 (6)
C80.6935 (3)0.3798 (2)1.0658 (3)0.0804 (7)
H8A0.58540.37541.03750.121*
H8B0.72670.45721.01820.121*
H8C0.68440.39811.15470.121*
C90.9340 (2)0.2467 (2)0.67574 (17)0.0476 (4)
C100.9440 (3)0.3730 (2)0.7267 (2)0.0585 (5)
H100.86760.41550.79070.070*
C111.0702 (3)0.4352 (2)0.6806 (2)0.0613 (5)
H111.07710.52110.71360.074*
C121.1854 (3)0.3732 (2)0.58733 (19)0.0541 (5)
C131.1713 (3)0.2464 (2)0.5368 (2)0.0603 (5)
H131.24770.20390.47290.072*
C141.0458 (3)0.1830 (2)0.58002 (19)0.0569 (5)
H141.03660.09870.54530.068*
C151.3252 (3)0.4399 (3)0.5411 (3)0.0757 (7)
H15A1.29010.54270.55410.114*
H15B1.34820.42540.45200.114*
H15C1.42630.39400.58760.114*
N10.6741 (3)0.1525 (2)1.28715 (19)0.0734 (5)
S10.77841 (6)0.16535 (5)0.73509 (5)0.05360 (17)
O10.7587 (3)−0.3163 (2)0.8658 (2)0.1075 (7)
O20.5469 (3)0.1609 (3)1.3527 (2)0.1279 (9)
O30.7902 (3)0.1989 (2)1.31513 (18)0.0950 (6)
O40.81953 (17)0.24287 (14)1.04624 (14)0.0588 (4)
O50.88441 (15)0.06651 (13)0.85158 (12)0.0497 (3)
O60.63603 (17)0.26914 (17)0.78802 (15)0.0685 (4)
O70.7507 (2)0.0679 (2)0.64859 (16)0.0786 (5)
H70.862 (3)−0.182 (3)0.796 (2)0.074 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0396 (8)0.0408 (8)0.0614 (11)−0.0089 (7)−0.0029 (8)−0.0005 (8)
C20.0463 (10)0.0454 (9)0.0704 (12)−0.0169 (8)−0.0019 (9)0.0074 (9)
C30.0443 (10)0.0623 (11)0.0601 (11)−0.0158 (8)0.0031 (8)0.0110 (9)
C40.0417 (9)0.0566 (10)0.0536 (10)−0.0085 (8)0.0008 (8)−0.0053 (8)
C50.0359 (8)0.0404 (8)0.0597 (10)−0.0099 (7)−0.0024 (7)0.0002 (8)
C60.0331 (8)0.0425 (8)0.0507 (9)−0.0098 (6)−0.0006 (7)0.0032 (7)
C70.0707 (14)0.0507 (11)0.0770 (15)−0.0181 (10)0.0055 (12)−0.0123 (10)
C80.0891 (17)0.0435 (11)0.1050 (19)−0.0107 (11)−0.0060 (15)−0.0103 (12)
C90.0500 (10)0.0507 (9)0.0465 (9)−0.0226 (8)−0.0023 (7)0.0022 (7)
C100.0620 (12)0.0551 (11)0.0620 (12)−0.0225 (9)0.0110 (9)−0.0115 (9)
C110.0699 (13)0.0498 (10)0.0722 (13)−0.0295 (10)0.0039 (10)−0.0093 (9)
C120.0572 (11)0.0548 (10)0.0553 (10)−0.0262 (9)−0.0025 (9)0.0082 (9)
C130.0651 (12)0.0697 (12)0.0516 (11)−0.0289 (10)0.0128 (9)−0.0075 (9)
C140.0693 (12)0.0589 (11)0.0516 (10)−0.0324 (10)0.0041 (9)−0.0100 (9)
C150.0691 (14)0.0796 (15)0.0879 (16)−0.0416 (12)0.0041 (12)0.0126 (13)
N10.0743 (13)0.0818 (13)0.0614 (11)−0.0165 (11)0.0068 (10)−0.0140 (10)
S10.0482 (3)0.0630 (3)0.0554 (3)−0.0270 (2)−0.0066 (2)0.0082 (2)
O10.1421 (19)0.0669 (11)0.1292 (17)−0.0530 (12)0.0317 (14)−0.0372 (11)
O20.1049 (16)0.185 (2)0.0988 (16)−0.0444 (17)0.0474 (14)−0.0604 (17)
O30.1123 (15)0.1068 (14)0.0786 (12)−0.0459 (13)−0.0068 (11)−0.0262 (11)
O40.0565 (8)0.0453 (7)0.0785 (9)−0.0205 (6)0.0023 (7)−0.0070 (6)
O50.0402 (6)0.0538 (7)0.0535 (7)−0.0130 (5)0.0029 (5)0.0052 (6)
O60.0433 (7)0.0758 (9)0.0808 (10)−0.0136 (7)−0.0020 (7)0.0215 (8)
O70.0926 (12)0.0985 (12)0.0683 (9)−0.0644 (10)−0.0141 (8)0.0003 (9)

Geometric parameters (Å, °)

C1—C61.390 (2)C9—C141.381 (3)
C1—C21.395 (3)C9—S11.7417 (18)
C1—C71.481 (3)C10—C111.385 (3)
C2—C31.362 (3)C10—H100.9300
C2—H20.9300C11—C121.372 (3)
C3—C41.382 (3)C11—H110.9300
C3—H30.9300C12—C131.391 (3)
C4—C51.397 (3)C12—C151.507 (3)
C4—N11.469 (3)C13—C141.378 (3)
C5—O41.353 (2)C13—H130.9300
C5—C61.391 (3)C14—H140.9300
C6—O51.396 (2)C15—H15A0.9600
C7—O11.195 (3)C15—H15B0.9600
C7—H70.90 (3)C15—H15C0.9600
C8—O41.439 (3)N1—O21.208 (3)
C8—H8A0.9600N1—O31.212 (3)
C8—H8B0.9600S1—O71.4157 (17)
C8—H8C0.9600S1—O61.4194 (16)
C9—C101.378 (3)S1—O51.6206 (13)
C6—C1—C2118.45 (17)C9—C10—H10120.7
C6—C1—C7122.12 (18)C11—C10—H10120.7
C2—C1—C7119.42 (18)C12—C11—C10121.56 (18)
C3—C2—C1120.55 (17)C12—C11—H11119.2
C3—C2—H2119.7C10—C11—H11119.2
C1—C2—H2119.7C11—C12—C13118.60 (17)
C2—C3—C4119.79 (18)C11—C12—C15120.86 (19)
C2—C3—H3120.1C13—C12—C15120.5 (2)
C4—C3—H3120.1C14—C13—C12121.05 (19)
C3—C4—C5122.26 (18)C14—C13—H13119.5
C3—C4—N1117.05 (18)C12—C13—H13119.5
C5—C4—N1120.54 (18)C13—C14—C9118.86 (18)
O4—C5—C6118.41 (16)C13—C14—H14120.6
O4—C5—C4125.31 (17)C9—C14—H14120.6
C6—C5—C4116.20 (16)C12—C15—H15A109.5
C1—C6—C5122.61 (16)C12—C15—H15B109.5
C1—C6—O5119.59 (16)H15A—C15—H15B109.5
C5—C6—O5117.56 (15)C12—C15—H15C109.5
O1—C7—C1122.8 (2)H15A—C15—H15C109.5
O1—C7—H7120.0 (16)H15B—C15—H15C109.5
C1—C7—H7117.2 (16)O2—N1—O3124.0 (2)
O4—C8—H8A109.5O2—N1—C4117.3 (2)
O4—C8—H8B109.5O3—N1—C4118.5 (2)
H8A—C8—H8B109.5O7—S1—O6119.12 (11)
O4—C8—H8C109.5O7—S1—O5107.06 (9)
H8A—C8—H8C109.5O6—S1—O5107.89 (8)
H8B—C8—H8C109.5O7—S1—C9111.02 (10)
C10—C9—C14121.31 (17)O6—S1—C9111.53 (9)
C10—C9—S1119.04 (15)O5—S1—C997.91 (8)
C14—C9—S1119.64 (14)C5—O4—C8117.22 (16)
C9—C10—C11118.60 (19)C6—O5—S1119.51 (10)
C6—C1—C2—C3−2.3 (3)C10—C11—C12—C15−178.1 (2)
C7—C1—C2—C3176.22 (18)C11—C12—C13—C14−0.7 (3)
C1—C2—C3—C4−0.8 (3)C15—C12—C13—C14178.8 (2)
C2—C3—C4—C53.5 (3)C12—C13—C14—C9−0.5 (3)
C2—C3—C4—N1−172.22 (18)C10—C9—C14—C131.1 (3)
C3—C4—C5—O4−179.50 (17)S1—C9—C14—C13−178.09 (17)
N1—C4—C5—O4−3.9 (3)C3—C4—N1—O2−40.7 (3)
C3—C4—C5—C6−2.9 (3)C5—C4—N1—O2143.5 (2)
N1—C4—C5—C6172.72 (16)C3—C4—N1—O3135.6 (2)
C2—C1—C6—C52.9 (3)C5—C4—N1—O3−40.2 (3)
C7—C1—C6—C5−175.55 (17)C10—C9—S1—O7161.44 (16)
C2—C1—C6—O5177.10 (15)C14—C9—S1—O7−19.3 (2)
C7—C1—C6—O5−1.3 (3)C10—C9—S1—O626.04 (19)
O4—C5—C6—C1176.49 (15)C14—C9—S1—O6−154.70 (16)
C4—C5—C6—C1−0.4 (2)C10—C9—S1—O5−86.80 (17)
O4—C5—C6—O52.2 (2)C14—C9—S1—O592.45 (17)
C4—C5—C6—O5−174.69 (14)C6—C5—O4—C8124.5 (2)
C6—C1—C7—O1−176.9 (2)C4—C5—O4—C8−58.9 (3)
C2—C1—C7—O14.7 (3)C1—C6—O5—S193.43 (17)
C14—C9—C10—C11−0.5 (3)C5—C6—O5—S1−92.07 (17)
S1—C9—C10—C11178.74 (17)O7—S1—O5—C6−92.32 (14)
C9—C10—C11—C12−0.8 (3)O6—S1—O5—C637.02 (15)
C10—C11—C12—C131.4 (3)C9—S1—O5—C6152.75 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.703.335 (3)125

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2179).

References

  • Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611-9. [PubMed]
  • Baldessarini, R. J. (1987). Am J. Med, 83, 95–103. [PubMed]
  • Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149. [PubMed]
  • Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.
  • Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.
  • Ramachandran, G., Kanakam, C. C., Gunasekaran, B. & Manivannan, V. (2008). Acta Cryst. E64, o1760. [PMC free article] [PubMed]
  • Ramachandran, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o873. [PMC free article] [PubMed]
  • Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.
  • Ramachandran, G., Suresh, R., Chakkaravarthi, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o1576. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spungin, B., Levinshal, T., Rubenstein, S. & Breithart, H. (1992). FEBS Lett.311, 155–160. [PubMed]
  • Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J Chromatogr.595, 103–111. [PubMed]
  • Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochem Biophys Acta, 1978, 1–7 . [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography