PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1231.
Published online 2008 September 6. doi:  10.1107/S1600536808026068
PMCID: PMC2959384

Diaqua­bis(4-bromo-2-formyl­phenolato-κ2 O,O′)cobalt(II)

Abstract

In the title complex, [Co(C7H4BrO2)2(H2O)2], the CoII ion, which lies on a crystallographic inversion center, is coordin­ated by four O atoms from two bidentate 4-bromo-2-formyl­phenolate ligands and two O atoms from two water ligands in a slightly distorted octa­hedral environment. In the crystal structure, one-dimensional chains are formed through inter­molecular O—H(...)O hydrogen bonds, which are further linked into a two-dimensional network through Br(...)Br inter­actions [Br(...)Br = 3.772 (4) Å].

Related literature

For related literature, see: Cohen et al. (1964 [triangle]); Desiraju (1989 [triangle]); Mathews & Manohar (1991 [triangle]); Willey et al. (1994 [triangle]); Zaman et al. (2004 [triangle]); Zhang et al. (2007 [triangle]); Zordan et al. (2005 [triangle]); Chen et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1231-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H4BrO2)2(H2O)2]
  • M r = 494.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1231-efi1.jpg
  • a = 29.527 (5) Å
  • b = 4.7406 (8) Å
  • c = 11.6314 (18) Å
  • β = 103.162 (3)°
  • V = 1585.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.15 mm−1
  • T = 293 (2) K
  • 0.21 × 0.19 × 0.19 mm

Data collection

  • Bruker SMART-CCD diffractometer
  • Absorption correction: none
  • 3884 measured reflections
  • 1553 independent reflections
  • 1290 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.095
  • S = 1.04
  • 1553 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026068/lh2677sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026068/lh2677Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guangxi, People’s Republic of China.

supplementary crystallographic information

Comment

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of bromo substituents on aromatic groups have aroused increasing interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964, Zordan et al., 2005; Desiraju, et al. 1989, Zaman et al., 2004; Zhang, et al., 2007, Chen, et al., 2008). The title compound, (I), contains the bromo ligand 5-bromo-2-hydroxy-benzaldehyde, with one Br atom accessible at the periphery of each ligand.

In the molecular structure of (I), the CoII ion is coordinated by four O atoms from two bidentate 5-bromo-2-hydroxy-benzaldehyde ligands and two O atoms from two H2O ligands forming a slightly distorted octahedral geometry (Fig. 1). In the crystal structure, 1-D chains are formed through O–H···O hydrogen bonds (O3···O1i, 2.842 (4)Å; O3···O2ii, 2.725 (4); symmetry codes: (i)-x, -y-1, -z+1; (ii) x, y-1, z). Each molecule of (I) forms eight hydrogen bonds, four of which are donor hydrogen bonds and four are acceptor hydrogen bonds. The 1-D chains are further linked into a 2-D network via Br1···Br1 interactions. The shortest Br1···Br1 distance is 3.772 Å, (Mathews & Manohar, 1991; Willey et al., 1994) observed between Br1 and Br1iii, Br1 and Br1iv [symmetry codes: (iii) 1/2-x,-1/2+y,1/2-z; (iv) 1/2-x,1/2+y,1/2-z] .

Experimental

Distilled water (30 ml) containing 5-bromo-2-hydroxy-benzaldehyde (0.201 g, 1 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid (0.111 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of cobalt chloride (0.237 g, 1 mmol) was added to the resulting solution and stirred for 2 h and filtrate. the filtration was left to stand at room temperature. After 12 days, red crystals were produced from the filtrate (yield: 76.4 %, based on Co).

Refinement

H atoms were positioned geometrically and were treated as riding atoms, with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C), and with and O–H distance of 0.85 Å and Uiso(H) = 1.5 Ueq(O) .

Figures

Fig. 1.
A view of (I), showing 30% probability displacement ellipsoids [symmetry code: (A) -x, -y, -z+1]
Fig. 2.
1-D chain of (I). Dashed lines indicate hydrogen bonds.
Fig. 3.
2-D structure of (I). Blue dashed lines indicate Br..Br interactions and yellow dashed lnies show hydrogen bonds.

Crystal data

[Co(C7H4BrO2)2(H2O)2]F(000) = 964
Mr = 494.99Dx = 2.074 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3884 reflections
a = 29.527 (5) Åθ = 2.8–26.0°
b = 4.7406 (8) ŵ = 6.15 mm1
c = 11.6314 (18) ÅT = 293 K
β = 103.162 (3)°Prism, red
V = 1585.3 (4) Å30.21 × 0.19 × 0.19 mm
Z = 4

Data collection

Bruker SMART-CCD diffractometer1290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 26.0°, θmin = 2.8°
[var phi] and ω scansh = −27→36
3884 measured reflectionsk = −5→5
1553 independent reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0409P)2 + 2.4257P] where P = (Fo2 + 2Fc2)/3
1553 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.00000.50000.0288 (2)
Br10.222905 (17)0.41219 (14)0.34123 (5)0.0652 (2)
O10.03315 (9)−0.2051 (5)0.3818 (2)0.0354 (6)
O20.05893 (9)0.2221 (5)0.5574 (2)0.0333 (6)
O30.02353 (10)−0.3049 (5)0.6373 (2)0.0377 (6)
H3B0.0416−0.41950.61350.057*
H30.0003−0.39710.64900.057*
C10.09460 (13)0.2474 (8)0.5103 (3)0.0309 (8)
C20.13013 (14)0.4390 (9)0.5592 (4)0.0405 (10)
H20.12800.53900.62660.049*
C30.16768 (15)0.4831 (10)0.5110 (4)0.0447 (11)
H3A0.19080.60940.54630.054*
C40.17148 (14)0.3393 (10)0.4089 (4)0.0421 (10)
C50.13865 (13)0.1447 (9)0.3593 (3)0.0377 (9)
H50.14190.04470.29280.045*
C60.09989 (13)0.0949 (8)0.4087 (3)0.0304 (8)
C70.06866 (15)−0.1242 (8)0.3544 (3)0.0367 (9)
H70.0763−0.21570.29070.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0330 (4)0.0264 (4)0.0284 (4)−0.0043 (3)0.0104 (3)−0.0022 (3)
Br10.0404 (3)0.1038 (5)0.0569 (3)−0.0135 (3)0.0226 (2)0.0066 (3)
O10.0411 (16)0.0322 (14)0.0362 (15)−0.0047 (12)0.0157 (12)−0.0056 (11)
O20.0323 (15)0.0353 (15)0.0340 (14)−0.0067 (12)0.0114 (12)−0.0080 (11)
O30.0474 (17)0.0312 (14)0.0364 (15)−0.0001 (12)0.0138 (13)−0.0008 (11)
C10.031 (2)0.032 (2)0.030 (2)0.0007 (16)0.0078 (16)0.0034 (15)
C20.037 (2)0.049 (3)0.036 (2)−0.0060 (19)0.0098 (19)−0.0067 (18)
C30.035 (2)0.054 (3)0.043 (3)−0.012 (2)0.006 (2)0.001 (2)
C40.031 (2)0.056 (3)0.041 (2)−0.003 (2)0.0123 (18)0.009 (2)
C50.037 (2)0.048 (3)0.031 (2)0.0001 (19)0.0122 (17)0.0015 (18)
C60.034 (2)0.0287 (19)0.0287 (19)0.0008 (16)0.0062 (16)0.0003 (15)
C70.045 (3)0.038 (2)0.032 (2)0.0022 (19)0.0177 (18)−0.0033 (17)

Geometric parameters (Å, °)

Co1—O2i2.013 (2)C1—C21.406 (6)
Co1—O22.013 (2)C1—C61.424 (5)
Co1—O12.099 (2)C2—C31.368 (6)
Co1—O1i2.099 (2)C2—H20.9300
Co1—O3i2.149 (3)C3—C41.395 (6)
Co1—O32.149 (3)C3—H3A0.9300
Br1—C41.894 (4)C4—C51.367 (6)
O1—C71.225 (5)C5—C61.412 (5)
O2—C11.299 (4)C5—H50.9300
O3—H3B0.8500C6—C71.436 (6)
O3—H30.8500C7—H70.9300
O2i—Co1—O2180O2—C1—C6123.8 (3)
O2i—Co1—O192.14 (10)C2—C1—C6116.8 (3)
O2—Co1—O187.86 (10)C3—C2—C1122.1 (4)
O2i—Co1—O1i87.86 (10)C3—C2—H2118.9
O2—Co1—O1i92.14 (10)C1—C2—H2118.9
O1—Co1—O1i180C2—C3—C4120.3 (4)
O2i—Co1—O3i89.80 (10)C2—C3—H3A119.9
O2—Co1—O3i90.20 (10)C4—C3—H3A119.9
O1—Co1—O3i86.83 (10)C5—C4—C3120.1 (4)
O1i—Co1—O3i93.17 (10)C5—C4—Br1120.4 (3)
O2i—Co1—O390.20 (10)C3—C4—Br1119.5 (3)
O2—Co1—O389.80 (10)C4—C5—C6120.3 (4)
O1—Co1—O393.17 (10)C4—C5—H5119.9
O1i—Co1—O386.83 (10)C6—C5—H5119.9
O3i—Co1—O3180C5—C6—C1120.3 (3)
C7—O1—Co1125.4 (2)C5—C6—C7116.2 (3)
C1—O2—Co1129.1 (2)C1—C6—C7123.5 (3)
Co1—O3—H3B107.9O1—C7—C6127.9 (4)
Co1—O3—H3109.2O1—C7—H7116.1
H3B—O3—H3108.2C6—C7—H7116.1
O2—C1—C2119.4 (3)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.852.122.842 (4)142.
O3—H3B···O2iii0.851.932.725 (4)155.

Symmetry codes: (ii) −x, −y−1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2677).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chen, F.-Y., Zhang, S.-H. & Ge, C.-M. (2008). Acta Cryst. E64, m1068. [PMC free article] [PubMed]
  • Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621–1624.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Willey, G. R., Palin, J., Lakin, M. T. & Alcock, N. W. (1994). Transition Met. Chem.19, 187–190.
  • Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des.4, 585–589.
  • Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  • Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc.127, 5979–5989. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography