PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1337.
Published online 2008 September 27. doi:  10.1107/S1600536808030705
PMCID: PMC2959382

(Nitrato-κO)oxido(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N)molybdenum(V) benzene solvate

Abstract

In the title compound, [Mo(C44H28N4)(NO3)O]·C6H6, the porphyrin ring is centrosymmetric. The Mo atom, oxide ion and nitrate ion are equally disordered over two sites, such that the Mo atom is displaced by 0.366 (1) Å towards the oxide ion from the 24-atom mean plane of the porphyrin, and also makes a long Mo—O bond to a nitrate O atom. A centrosymmetric benzene solvent mol­ecule is situated between adjacent porphyrin mol­ecules.

Related literature

For the structure of (TPP)Mo(O)(ONO2) (TPP is the tetraphenylporphyrinate dianion) with CH2Cl2 as the solvate, see: Okubo et al. (1999 [triangle]). For the crystal structures of related molybdenum(V)-oxo porphyrin complexes, see: Harada et al. (2004 [triangle]); Kim et al. (1987 [triangle]); Hamstra et al. (1999 [triangle]); Fujihara et al. (2002 [triangle]); Ledon & Mentzen (1978 [triangle]); Liu et al. (2001 [triangle]); Imamura & Furusaki (1990 [triangle]); Cheng & Scheidt (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1337-scheme1.jpg

Experimental

Crystal data

  • [Mo(C44H28N4)(NO3)O]·C6H6
  • M r = 864.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1337-efi1.jpg
  • a = 8.6846 (14) Å
  • b = 11.2895 (18) Å
  • c = 11.7180 (18) Å
  • α = 61.617 (5)°
  • β = 79.283 (6)°
  • γ = 76.354 (6)°
  • V = 978.6 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 120 (2) K
  • 0.16 × 0.08 × 0.02 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.938, T max = 0.994
  • 10263 measured reflections
  • 3836 independent reflections
  • 3395 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.108
  • S = 1.16
  • 3836 reflections
  • 298 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030705/hb2799sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030705/hb2799Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Science Foundation (grant Nos. CHE-0079282 and CHE-0076640) and the University of Oklahoma for funds to support this research and to acquire the diffractometer and computers used in this work.

supplementary crystallographic information

Comment

In this paper, we report the structure of the title compound, (I), a six-coordinate nitrate molybdenum(V)-oxo tetraphenylporphyrin with benzene as solvate, and the new approach to synthesize the compound using oxochloromolybdenum tetraphenylporphyrin as the precursor. The structure of the related compound with CH2Cl2 as solvate has been reported previously (Okubo et al. 1999).

The molecular structure of (I) is shown in Fig. 1. Both the metal complex and the benzene molecule were found to sit on a crystallographic center of symmetry. The porphyrin core of the compound has a slight wave shape. The Mo atom is displaced by 0.366 (1) Å from the 24-atom mean porphyrin plane toward the oxo ion. The nitrate ligand binds to the molybdenum atom through one of its oxygen atoms. Selected bond lengths are given in Table 1. The Mo(V)═O distance of 1.678 (9) Å in (I) is in the range of those [1.658 (2)–1.722 (6) Å] reported previously for other molybdenum(V)-oxo porphyrin complexes (Harada et al., 2004; Kim et al., 1987; Hamstra et al., 1999; Fujihara et al., 2002; Ledon & Mentzen, 1978; Liu et al., 2001; Imamura & Furusaki, 1990; Cheng & Scheidt, 1996). The O═Mo—O linkage in (I) is essentially linear with a bond angle of 174.4 (16)°. A benzene molecule is situated between two adjacent porphyrin molecules with 1:1 benzene/porphyrin stoichiometry.

Experimental

To a toluene solution (20 ml) of (TPP)Mo(O)Cl (0.015 g, 0.020 mmol) (Ledon & Mentzen, 1978) under nitrogen was added LiAlH4 (0.0016 g, 0.42 mmol) (Aldrich Chemical Company, used as received). Then, nitric oxide (98%; Matheson Gas, purified by passing through KOH pellets and a cold trap (dry ice/acetone) to remove higher nitrogen oxides) was bubbled through the mixture for 15 min. The mixture was stirred for an additional 30 min and filtered. A dark green solid was obtained after removal of solvent under vacuum. A suitable dark green prism-shaped crystal of (I) was grown by slow evaporation of a benzene solution of the product at room temperature under nitrogen.

Refinement

The H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The metal, the oxo ion and the nitrate group are disordered by 50% across the center of symmetry.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (H atoms omitted for clarity). The unlabelled atoms of the complex and the benzene molecule are generated by the symmetry operations (1-x, 1-y, 1-z) and (-x, ...

Crystal data

[Mo(C44H28N4)(NO3)O]·C6H6Z = 1
Mr = 864.76F(000) = 443
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6846 (14) ÅCell parameters from 7414 reflections
b = 11.2895 (18) Åθ = 3.2–26.3°
c = 11.7180 (18) ŵ = 0.39 mm1
α = 61.617 (5)°T = 120 K
β = 79.283 (6)°Prism, green
γ = 76.354 (6)°0.16 × 0.08 × 0.02 mm
V = 978.6 (3) Å3

Data collection

Bruker SMART APEX CCD diffractometer3836 independent reflections
Radiation source: fine-focus sealed tube3395 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −10→10
Tmin = 0.938, Tmax = 0.994k = −13→13
10263 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.032P)2 + P] where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mo10.47549 (6)0.53402 (4)0.48115 (5)0.02365 (15)0.50
O10.354 (3)0.668 (2)0.380 (2)0.031 (3)0.50
O20.652 (3)0.356 (2)0.598 (2)0.035 (3)0.50
N30.6402 (5)0.2554 (5)0.7138 (5)0.0285 (10)0.50
O40.5111 (4)0.2409 (4)0.7791 (4)0.0340 (9)0.50
O30.7618 (5)0.1698 (4)0.7537 (4)0.0369 (9)0.50
N10.3480 (3)0.3743 (2)0.5196 (2)0.0283 (5)
N20.6227 (2)0.4736 (2)0.3433 (2)0.0275 (5)
C10.2198 (3)0.3414 (3)0.6109 (3)0.0289 (6)
C20.1423 (3)0.2553 (3)0.5895 (3)0.0335 (6)
H20.05030.21810.63820.040*
C30.2241 (3)0.2368 (3)0.4875 (3)0.0323 (6)
H30.19940.18450.45160.039*
C40.3545 (3)0.3100 (3)0.4433 (2)0.0272 (6)
C50.4674 (3)0.3184 (3)0.3386 (2)0.0275 (6)
C60.5898 (3)0.3952 (3)0.2919 (2)0.0275 (6)
C70.7039 (3)0.4052 (3)0.1842 (3)0.0310 (6)
H70.70850.36210.13070.037*
C80.8043 (3)0.4869 (3)0.1715 (3)0.0314 (6)
H80.89240.51050.10830.038*
C90.7534 (3)0.5311 (3)0.2710 (3)0.0294 (6)
C100.8261 (3)0.6181 (3)0.2904 (3)0.0288 (6)
C110.4563 (3)0.2361 (3)0.2711 (3)0.0287 (6)
C120.3794 (4)0.2953 (3)0.1587 (3)0.0498 (9)
H120.33450.38970.12190.060*
C130.3678 (5)0.2168 (3)0.0993 (3)0.0553 (10)
H130.31580.25830.02140.066*
C140.4304 (4)0.0806 (3)0.1518 (3)0.0380 (7)
H140.41940.02710.11210.046*
C150.5086 (3)0.0221 (3)0.2614 (3)0.0354 (6)
H150.5536−0.07220.29760.042*
C160.5226 (3)0.1001 (3)0.3206 (3)0.0326 (6)
H160.57890.05880.39620.039*
C170.9593 (3)0.6766 (3)0.1930 (3)0.0300 (6)
C181.1139 (4)0.6125 (3)0.2087 (3)0.0480 (8)
H181.13930.52890.28420.058*
C191.2343 (4)0.6692 (4)0.1146 (4)0.0599 (10)
H191.34170.62480.12630.072*
C201.1979 (4)0.7891 (4)0.0050 (3)0.0495 (9)
H201.28030.8280−0.05900.059*
C211.0445 (4)0.8521 (3)−0.0122 (3)0.0480 (8)
H211.01940.9340−0.08920.058*
C220.9241 (4)0.7975 (3)0.0823 (3)0.0412 (7)
H220.81720.84330.07070.049*
C260.0430 (5)−0.0977 (4)0.6200 (4)0.0581 (10)
H260.0726−0.16580.70370.070*
C27−0.0779 (4)0.0081 (4)0.6088 (4)0.0515 (9)
H27−0.13190.01350.68500.062*
C28−0.1220 (4)0.1060 (4)0.4897 (4)0.0566 (9)
H28−0.20660.17940.48230.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.0272 (3)0.0225 (3)0.0250 (3)−0.0065 (2)0.0001 (2)−0.0135 (3)
O10.043 (4)0.030 (6)0.011 (5)−0.001 (4)0.002 (3)−0.006 (5)
O20.035 (4)0.038 (6)0.026 (8)−0.004 (4)−0.008 (5)−0.008 (5)
N30.024 (2)0.033 (3)0.039 (3)−0.005 (2)0.002 (2)−0.026 (3)
O40.035 (2)0.028 (2)0.037 (2)−0.0094 (16)0.0041 (17)−0.0134 (18)
O30.036 (2)0.029 (2)0.044 (2)−0.0025 (17)−0.0056 (18)−0.0156 (19)
N10.0291 (12)0.0361 (13)0.0240 (11)−0.0124 (10)0.0033 (9)−0.0160 (10)
N20.0271 (12)0.0343 (13)0.0255 (11)−0.0119 (9)0.0022 (9)−0.0156 (10)
C10.0284 (14)0.0314 (14)0.0267 (14)−0.0088 (11)0.0002 (11)−0.0123 (12)
C20.0318 (15)0.0360 (16)0.0354 (16)−0.0125 (12)0.0014 (12)−0.0167 (13)
C30.0351 (15)0.0309 (15)0.0348 (15)−0.0095 (12)−0.0004 (12)−0.0172 (13)
C40.0297 (14)0.0276 (14)0.0252 (13)−0.0069 (11)−0.0018 (11)−0.0120 (11)
C50.0311 (14)0.0268 (14)0.0251 (13)−0.0055 (11)−0.0026 (11)−0.0117 (11)
C60.0306 (14)0.0264 (14)0.0237 (13)−0.0040 (11)−0.0020 (11)−0.0102 (11)
C70.0389 (16)0.0281 (14)0.0264 (14)−0.0062 (12)0.0014 (12)−0.0140 (12)
C80.0344 (15)0.0308 (15)0.0267 (14)−0.0086 (12)0.0042 (11)−0.0122 (12)
C90.0301 (14)0.0334 (15)0.0252 (14)−0.0080 (11)0.0008 (11)−0.0135 (12)
C100.0268 (14)0.0320 (14)0.0267 (14)−0.0079 (11)0.0017 (11)−0.0125 (12)
C110.0310 (14)0.0313 (14)0.0266 (14)−0.0109 (11)0.0038 (11)−0.0149 (12)
C120.075 (2)0.0312 (16)0.0470 (19)0.0034 (16)−0.0252 (17)−0.0198 (15)
C130.083 (3)0.0436 (19)0.047 (2)0.0021 (18)−0.0304 (19)−0.0239 (17)
C140.0465 (18)0.0402 (17)0.0360 (16)−0.0147 (14)0.0011 (13)−0.0224 (14)
C150.0397 (16)0.0299 (15)0.0363 (16)−0.0106 (12)0.0029 (13)−0.0148 (13)
C160.0373 (16)0.0329 (15)0.0275 (14)−0.0085 (12)−0.0033 (12)−0.0123 (12)
C170.0328 (15)0.0342 (15)0.0290 (14)−0.0126 (12)0.0038 (11)−0.0183 (12)
C180.0372 (18)0.0411 (18)0.049 (2)−0.0083 (14)0.0055 (14)−0.0095 (15)
C190.0358 (19)0.058 (2)0.072 (3)−0.0119 (16)0.0178 (17)−0.025 (2)
C200.061 (2)0.048 (2)0.048 (2)−0.0306 (17)0.0262 (17)−0.0293 (17)
C210.069 (2)0.0421 (18)0.0316 (17)−0.0245 (17)0.0027 (15)−0.0112 (14)
C220.0448 (18)0.0402 (17)0.0358 (17)−0.0139 (14)−0.0026 (14)−0.0122 (14)
C260.064 (2)0.046 (2)0.056 (2)−0.0140 (18)−0.0220 (19)−0.0079 (17)
C270.0438 (19)0.062 (2)0.057 (2)−0.0220 (17)−0.0022 (16)−0.0294 (19)
C280.047 (2)0.046 (2)0.082 (3)0.0000 (16)−0.0212 (19)−0.031 (2)

Geometric parameters (Å, °)

Mo1—O11.678 (9)C10—C171.493 (4)
Mo1—N1i2.039 (2)C11—C161.373 (4)
Mo1—N2i2.044 (2)C11—C121.380 (4)
Mo1—N22.139 (2)C12—C131.391 (4)
Mo1—N12.159 (2)C12—H120.9500
Mo1—O22.227 (9)C13—C141.367 (4)
O2—N31.30 (2)C13—H130.9500
N3—O41.232 (6)C14—C151.361 (4)
N3—O31.241 (6)C14—H140.9500
N1—C11.377 (3)C15—C161.391 (4)
N1—C41.382 (3)C15—H150.9500
N1—Mo1i2.039 (2)C16—H160.9500
N2—C91.377 (3)C17—C181.366 (4)
N2—C61.385 (3)C17—C221.381 (4)
N2—Mo1i2.044 (2)C18—C191.391 (4)
C1—C10i1.398 (4)C18—H180.9500
C1—C21.436 (4)C19—C201.370 (5)
C2—C31.352 (4)C19—H190.9500
C2—H20.9500C20—C211.356 (5)
C3—C41.432 (4)C20—H200.9500
C3—H30.9500C21—C221.387 (4)
C4—C51.400 (4)C21—H210.9500
C5—C61.395 (4)C22—H220.9500
C5—C111.507 (3)C26—C271.363 (5)
C6—C71.428 (4)C26—C28ii1.374 (5)
C7—C81.354 (4)C26—H260.9500
C7—H70.9500C27—C281.360 (5)
C8—C91.436 (4)C27—H270.9500
C8—H80.9500C28—C26ii1.374 (5)
C9—C101.404 (4)C28—H280.9500
C10—C1i1.398 (4)
O1—Mo1—N1i101.6 (11)C9—C8—H8126.2
O1—Mo1—N2i100.8 (9)N2—C9—C10126.3 (2)
N1i—Mo1—N2i90.76 (8)N2—C9—C8108.4 (2)
O1—Mo1—N299.3 (8)C10—C9—C8125.3 (2)
N1i—Mo1—N288.93 (8)C1i—C10—C9125.7 (2)
N2i—Mo1—N2159.56 (3)C1i—C10—C17117.6 (2)
O1—Mo1—N198.5 (11)C9—C10—C17116.7 (2)
N1i—Mo1—N1159.74 (3)C16—C11—C12118.7 (3)
N2i—Mo1—N188.23 (8)C16—C11—C5120.4 (2)
N2—Mo1—N185.07 (8)C12—C11—C5120.9 (2)
O1—Mo1—O2174.4 (16)C11—C12—C13120.0 (3)
N1i—Mo1—O277.5 (8)C11—C12—H12120.0
N2i—Mo1—O284.8 (7)C13—C12—H12120.0
N2—Mo1—O275.2 (7)C14—C13—C12120.6 (3)
N1—Mo1—O282.2 (8)C14—C13—H13119.7
N3—O2—Mo1132.5 (17)C12—C13—H13119.7
O4—N3—O3121.0 (5)C15—C14—C13119.6 (3)
O4—N3—O2121.1 (11)C15—C14—H14120.2
O3—N3—O2117.8 (10)C13—C14—H14120.2
C1—N1—C4107.7 (2)C14—C15—C16120.1 (3)
C1—N1—Mo1i126.60 (17)C14—C15—H15119.9
C4—N1—Mo1i124.54 (17)C16—C15—H15119.9
C1—N1—Mo1123.63 (17)C11—C16—C15120.8 (3)
C4—N1—Mo1127.31 (17)C11—C16—H16119.6
C9—N2—C6107.7 (2)C15—C16—H16119.6
C9—N2—Mo1i126.73 (17)C18—C17—C22119.2 (3)
C6—N2—Mo1i124.14 (17)C18—C17—C10122.1 (3)
C9—N2—Mo1123.49 (17)C22—C17—C10118.7 (3)
C6—N2—Mo1127.58 (17)C17—C18—C19120.3 (3)
N1—C1—C10i126.1 (2)C17—C18—H18119.9
N1—C1—C2108.4 (2)C19—C18—H18119.9
C10i—C1—C2125.4 (2)C20—C19—C18120.0 (3)
C3—C2—C1107.7 (2)C20—C19—H19120.0
C3—C2—H2126.2C18—C19—H19120.0
C1—C2—H2126.2C21—C20—C19120.0 (3)
C2—C3—C4107.9 (2)C21—C20—H20120.0
C2—C3—H3126.0C19—C20—H20120.0
C4—C3—H3126.0C20—C21—C22120.3 (3)
N1—C4—C5125.5 (2)C20—C21—H21119.9
N1—C4—C3108.3 (2)C22—C21—H21119.9
C5—C4—C3126.2 (2)C17—C22—C21120.2 (3)
C6—C5—C4126.0 (2)C17—C22—H22119.9
C6—C5—C11117.1 (2)C21—C22—H22119.9
C4—C5—C11116.9 (2)C27—C26—C28ii120.0 (3)
N2—C6—C5125.8 (2)C27—C26—H26120.0
N2—C6—C7108.2 (2)C28ii—C26—H26120.0
C5—C6—C7126.0 (2)C28—C27—C26120.6 (4)
C8—C7—C6108.1 (2)C28—C27—H27119.7
C8—C7—H7125.9C26—C27—H27119.7
C6—C7—H7125.9C27—C28—C26ii119.3 (3)
C7—C8—C9107.5 (2)C27—C28—H28120.3
C7—C8—H8126.2C26ii—C28—H28120.3
N1i—Mo1—O2—N3126 (3)C3—C4—C5—C6176.7 (3)
N2i—Mo1—O2—N334 (2)N1—C4—C5—C11178.0 (2)
N2—Mo1—O2—N3−142 (3)C3—C4—C5—C11−3.8 (4)
N1—Mo1—O2—N3−55 (2)C9—N2—C6—C5179.1 (2)
Mo1—O2—N3—O44(3)Mo1i—N2—C6—C511.8 (4)
Mo1—O2—N3—O3179.8 (15)Mo1—N2—C6—C5−13.2 (4)
O1—Mo1—N1—C1−82.6 (9)C9—N2—C6—C7−0.2 (3)
N1i—Mo1—N1—C1105.4 (2)Mo1i—N2—C6—C7−167.48 (17)
N2i—Mo1—N1—C118.0 (2)Mo1—N2—C6—C7167.58 (17)
N2—Mo1—N1—C1178.7 (2)C4—C5—C6—N21.7 (4)
O2—Mo1—N1—C1103.0 (7)C11—C5—C6—N2−177.8 (2)
O1—Mo1—N1—C482.4 (9)C4—C5—C6—C7−179.2 (3)
N1i—Mo1—N1—C4−89.6 (2)C11—C5—C6—C71.3 (4)
N2i—Mo1—N1—C4−177.0 (2)N2—C6—C7—C80.5 (3)
N2—Mo1—N1—C4−16.4 (2)C5—C6—C7—C8−178.7 (3)
O2—Mo1—N1—C4−92.0 (7)C6—C7—C8—C9−0.7 (3)
O1—Mo1—N1—Mo1i172.0 (9)C6—N2—C9—C10179.9 (3)
N1i—Mo1—N1—Mo1i0.0Mo1i—N2—C9—C10−13.2 (4)
N2i—Mo1—N1—Mo1i−87.39 (11)Mo1—N2—C9—C1011.6 (4)
N2—Mo1—N1—Mo1i73.28 (10)C6—N2—C9—C8−0.2 (3)
O2—Mo1—N1—Mo1i−2.4 (7)Mo1i—N2—C9—C8166.65 (18)
O1—Mo1—N2—C984.7 (11)Mo1—N2—C9—C8−168.61 (17)
N1i—Mo1—N2—C9−16.9 (2)C7—C8—C9—N20.6 (3)
N2i—Mo1—N2—C9−106.2 (2)C7—C8—C9—C10−179.6 (3)
N1—Mo1—N2—C9−177.5 (2)N2—C9—C10—C1i1.8 (4)
O2—Mo1—N2—C9−94.2 (8)C8—C9—C10—C1i−178.0 (3)
O1—Mo1—N2—C6−81.3 (11)N2—C9—C10—C17−175.5 (2)
N1i—Mo1—N2—C6177.2 (2)C8—C9—C10—C174.8 (4)
N2i—Mo1—N2—C687.9 (2)C6—C5—C11—C1696.5 (3)
N1—Mo1—N2—C616.6 (2)C4—C5—C11—C16−83.0 (3)
O2—Mo1—N2—C699.8 (8)C6—C5—C11—C12−83.6 (3)
O1—Mo1—N2—Mo1i−169.1 (11)C4—C5—C11—C1296.9 (3)
N1i—Mo1—N2—Mo1i89.31 (11)C16—C11—C12—C131.2 (5)
N2i—Mo1—N2—Mo1i−0.003 (2)C5—C11—C12—C13−178.7 (3)
N1—Mo1—N2—Mo1i−71.32 (10)C11—C12—C13—C140.7 (6)
O2—Mo1—N2—Mo1i11.9 (8)C12—C13—C14—C15−1.8 (5)
C4—N1—C1—C10i177.8 (3)C13—C14—C15—C160.9 (5)
Mo1i—N1—C1—C10i9.8 (4)C12—C11—C16—C15−2.1 (4)
Mo1—N1—C1—C10i−14.7 (4)C5—C11—C16—C15177.9 (3)
C4—N1—C1—C2−0.9 (3)C14—C15—C16—C111.0 (4)
Mo1i—N1—C1—C2−168.85 (18)C1i—C10—C17—C1892.1 (3)
Mo1—N1—C1—C2166.57 (17)C9—C10—C17—C18−90.4 (3)
N1—C1—C2—C30.4 (3)C1i—C10—C17—C22−89.6 (3)
C10i—C1—C2—C3−178.3 (3)C9—C10—C17—C2287.8 (3)
C1—C2—C3—C40.3 (3)C22—C17—C18—C190.6 (5)
C1—N1—C4—C5179.5 (2)C10—C17—C18—C19178.8 (3)
Mo1i—N1—C4—C5−12.2 (4)C17—C18—C19—C20−0.7 (6)
Mo1—N1—C4—C512.7 (4)C18—C19—C20—C21−0.4 (6)
C1—N1—C4—C31.1 (3)C19—C20—C21—C221.5 (5)
Mo1i—N1—C4—C3169.33 (17)C18—C17—C22—C210.5 (4)
Mo1—N1—C4—C3−165.80 (17)C10—C17—C22—C21−177.8 (3)
C2—C3—C4—N1−0.8 (3)C20—C21—C22—C17−1.6 (5)
C2—C3—C4—C5−179.3 (3)C28ii—C26—C27—C280.3 (6)
N1—C4—C5—C6−1.5 (4)C26—C27—C28—C26ii−0.3 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2799).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 832–835. [PubMed]
  • Fujihara, T., Tsuge, K., Sasaki, Y., Kaminaga, Y. & Imamura, T. (2002). Inorg. Chem.41, 1170–1176. [PubMed]
  • Hamstra, B. J., Cheng, B., Ellison, M. K. & Scheidt, W. R. (1999). Inorg. Chem.38, 3554–3561. [PubMed]
  • Harada, R., Matsuda, Y., Okawa, Y. & Kojima, T. (2004). Angew. Chem. Int. Ed.43, 1825–1828. [PubMed]
  • Imamura, T. & Furusaki, A. (1990). Bull. Chem. Soc. Jpn, 63, 2726–2727.
  • Kim, K., Sparapany, J. W. & Ibers, J. A. (1987). Acta Cryst. C43, 2076–2078.
  • Ledon, H. & Mentzen, B. (1978). Inorg. Chim. Acta, 31, L393–L394.
  • Liu, W.-S., Zhang, R., Huang, J.-S., Che, C.-M. & Peng, S.-M. (2001). J. Organomet. Chem.634, 34–38.
  • Okubo, Y., Okamura, A., Imanishi, K., Tachibana, J., Umakoshi, K., Sasaki, Y. & Imamura, T. (1999). Bull. Chem. Soc. Jpn, 72, 2241–2247.
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography