PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1898.
Published online 2008 September 6. doi:  10.1107/S1600536808027414
PMCID: PMC2959381

4-Methyl-3-nitro­benzonitrile

Abstract

In the title compound, C8H6N2O2, the nitro group is rotated by 23.2 (3)° out of the plane of the benzene ring. The crystal structure is stabilized by van der Waals inter­actions.

Related literature

For the chemistry of nitrile derivatives, see: Xiong et al. (2002 [triangle]); Jin et al. (1994 [triangle]); Brewis et al. (2003 [triangle]); Dunica et al. (1991 [triangle]). For related literature, see: Fu & Zhao (2007 [triangle]); Liang & Wang, (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1898-scheme1.jpg

Experimental

Crystal data

  • C8H6N2O2
  • M r = 162.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1898-efi1.jpg
  • a = 3.9088 (8) Å
  • b = 13.576 (3) Å
  • c = 14.819 (4) Å
  • β = 99.13 (3)°
  • V = 776.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.35 × 0.30 × 0.1 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.965, T max = 0.990
  • 7589 measured reflections
  • 1761 independent reflections
  • 1336 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.208
  • S = 1.10
  • 1753 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027414/wk2090sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027414/wk2090Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Nitrile derivatives have found a wide range of applications in industry and coordination chemistry as ligands. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (Brewis et al., 2003). Also, nitrile compounds are the precursors of tetrazole complexes (Dunica et al.(1991); Xiong et al.(2002)). Recently, a series of benzonitrile compounds have been reported (Fu & Zhao, 2007; Liang & Wang, 2008). As an extension of these studies on structural characterization, we report here the crystal structure of the title compound, p-methyl-m-nitrobenzonitrile.

The crystal data show that in the title compound (Fig. 1), the benzene ring and the nitro group are not coplanar, they are twisted with respect to each other by torsion angles of O1—N1—C1—C6 (-23.2 (4)°) and O2—N1—C1—C2 (-25.6 (3)°); the nitrile group C8[equivalent]N2 bond length of 1.144 (3) Å is within the normal range. The crystal structure is stabilized only by van der Waals interactions.

Experimental

The purchased p-methyl-m-nitrobenzonitrile (3 mmol, 486.44 mg) was dissolved in chloroform (20 ml) and evaporated in air, affording colorless block crystals of this compound suitable for X-ray analysis.

Refinement

All H atoms bonded to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(aromatic C) and Uiso(H) = 1.5Ueq(methyl C).

Figures

Fig. 1.
A view of the molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

Crystal data

C8H6N2O2F(000) = 336
Mr = 162.15Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1764 reflections
a = 3.9088 (8) Åθ = 3.1–27.6°
b = 13.576 (3) ŵ = 0.10 mm1
c = 14.819 (4) ÅT = 298 K
β = 99.13 (3)°Block, colourless
V = 776.4 (3) Å30.35 × 0.30 × 0.1 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer1761 independent reflections
Radiation source: fine-focus sealed tube1336 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −5→5
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −17→17
Tmin = 0.965, Tmax = 0.990l = −19→19
7589 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.1036P)2 + 0.2336P] where P = (Fo2 + 2Fc2)/3
1753 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.0921 (7)0.79875 (18)0.59741 (14)0.1001 (9)
O21.3658 (7)0.89476 (18)0.52048 (17)0.0932 (8)
N11.1627 (5)0.82762 (16)0.52533 (14)0.0584 (6)
N20.5214 (8)0.45178 (18)0.38967 (18)0.0803 (8)
C11.0021 (5)0.77768 (15)0.44045 (14)0.0444 (5)
C80.6195 (7)0.53049 (18)0.38358 (16)0.0568 (6)
C20.9631 (5)0.82620 (16)0.35611 (15)0.0462 (5)
C60.8914 (6)0.68242 (16)0.45126 (14)0.0470 (5)
H60.91850.65350.50880.056*
C40.6963 (6)0.67560 (17)0.28898 (15)0.0530 (6)
H40.59420.64120.23740.064*
C50.7388 (6)0.63055 (16)0.37444 (15)0.0463 (5)
C30.8057 (7)0.77130 (18)0.28090 (16)0.0559 (6)
H30.77380.80040.22340.067*
C71.0660 (8)0.93151 (18)0.3406 (2)0.0672 (7)
H7A1.17000.96010.39760.101*
H7B0.86410.96870.31570.101*
H7C1.22930.93260.29850.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.145 (2)0.1075 (18)0.0430 (11)−0.0405 (15)0.0006 (12)−0.0087 (11)
O20.0966 (17)0.0881 (15)0.0906 (16)−0.0397 (13)0.0017 (12)−0.0237 (12)
N10.0605 (12)0.0593 (12)0.0523 (12)−0.0039 (10)−0.0011 (9)−0.0117 (9)
N20.106 (2)0.0562 (14)0.0755 (16)−0.0203 (13)0.0039 (14)−0.0061 (11)
C10.0410 (10)0.0476 (12)0.0436 (11)0.0013 (9)0.0041 (8)−0.0064 (9)
C80.0662 (15)0.0501 (13)0.0521 (14)−0.0036 (11)0.0029 (11)−0.0063 (10)
C20.0447 (11)0.0456 (11)0.0496 (12)0.0061 (9)0.0119 (9)0.0026 (9)
C60.0517 (12)0.0478 (12)0.0402 (11)0.0010 (9)0.0034 (9)0.0011 (9)
C40.0619 (14)0.0521 (13)0.0417 (12)0.0062 (10)−0.0014 (10)−0.0048 (9)
C50.0483 (12)0.0446 (11)0.0452 (12)0.0015 (9)0.0049 (8)−0.0036 (9)
C30.0708 (16)0.0543 (13)0.0415 (12)0.0083 (11)0.0058 (10)0.0059 (9)
C70.0707 (17)0.0504 (14)0.0807 (19)−0.0005 (12)0.0125 (14)0.0096 (12)

Geometric parameters (Å, °)

O1—N11.210 (3)C6—C51.390 (3)
O2—N11.218 (3)C6—H60.9300
N1—C11.478 (3)C4—C31.379 (3)
N2—C81.144 (3)C4—C51.392 (3)
C1—C61.381 (3)C4—H40.9300
C1—C21.400 (3)C3—H30.9300
C8—C51.450 (3)C7—H7A0.9600
C2—C31.400 (3)C7—H7B0.9600
C2—C71.513 (3)C7—H7C0.9600
O1—N1—O2122.4 (2)C3—C4—H4120.0
O1—N1—C1118.5 (2)C5—C4—H4120.0
O2—N1—C1119.1 (2)C6—C5—C4119.7 (2)
C6—C1—C2123.55 (19)C6—C5—C8120.1 (2)
C6—C1—N1115.43 (19)C4—C5—C8120.2 (2)
C2—C1—N1121.0 (2)C4—C3—C2122.4 (2)
N2—C8—C5178.9 (3)C4—C3—H3118.8
C3—C2—C1115.6 (2)C2—C3—H3118.8
C3—C2—C7118.4 (2)C2—C7—H7A109.5
C1—C2—C7125.9 (2)C2—C7—H7B109.5
C1—C6—C5118.75 (19)H7A—C7—H7B109.5
C1—C6—H6120.6C2—C7—H7C109.5
C5—C6—H6120.6H7A—C7—H7C109.5
C3—C4—C5119.9 (2)H7B—C7—H7C109.5
O1—N1—C1—C6−23.2 (3)N1—C1—C6—C5−179.76 (19)
O2—N1—C1—C6155.4 (2)C1—C6—C5—C4−0.9 (3)
O1—N1—C1—C2155.8 (2)C1—C6—C5—C8−179.9 (2)
O2—N1—C1—C2−25.6 (3)C3—C4—C5—C60.0 (3)
C6—C1—C2—C3−0.8 (3)C3—C4—C5—C8179.1 (2)
N1—C1—C2—C3−179.68 (19)C5—C4—C3—C20.5 (4)
C6—C1—C2—C7177.4 (2)C1—C2—C3—C4−0.1 (3)
N1—C1—C2—C7−1.4 (3)C7—C2—C3—C4−178.5 (2)
C2—C1—C6—C51.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2090).

References

  • Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.
  • Dunica, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem.56, 2395–2400.
  • Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.
  • Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem.468, 205–212.
  • Liang, W.-X. & Wang, G.-X. (2008). Acta Cryst. E64, o972. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation Inc., Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography