PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1291–m1292.
Published online 2008 September 20. doi:  10.1107/S1600536808029449
PMCID: PMC2959361

Aqua­(3-carboxybenzoato-κO 1)(nitrato-κO)(dipyrido[3,2-a:2′,3′-c]phenazine-κ2 N 4,N 5)copper(II)

Abstract

The title complex, [Cu(C8H5O4)(NO3)(C18H10N4)(H2O)], was synthesized by reacting Cu(NO3)2, isophthalic acid and dipyridophenazine under hydro­thermal conditions. The CuII ion is in a slightly distorted square-pyramidal coordination environment. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds connect complex mol­ecules into chains along [001].

Related literature

For related literature, see: Gupta et al. (1992 [triangle]); Han & Ma (2006 [triangle]); Han et al. (2007 [triangle]); Hartshorn & Barton (1992 [triangle]); He & Han (2006 [triangle]); Murphy et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1291-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H5O4)(NO3)(C18H10N4)(H2O)]
  • M r = 590.99
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1291-efi1.jpg
  • a = 7.8965 (17) Å
  • b = 11.295 (4) Å
  • c = 14.533 (6) Å
  • α = 112.73 (3)°
  • β = 90.94 (3)°
  • γ = 102.60 (2)°
  • V = 1159.4 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 293 (2) K
  • 0.37 × 0.32 × 0.24 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.707, T max = 0.797
  • 6320 measured reflections
  • 5180 independent reflections
  • 3353 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.198
  • S = 1.01
  • 5180 reflections
  • 367 parameters
  • 39 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.92 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029449/lh2688sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029449/lh2688Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Project of Shanghai Municipal Education Commission (2008068, 2008080).

supplementary crystallographic information

Comment

Dipyridophenazine derivatives can be used as molecular light switches (Hartshorn & Barton, 1992) for the study of fast electron transfer through DNA (Murphy et al., 1993). A dipyridophenazine ruthenium(II) complex has been found to be a good cleavage agent with high affinity for DNA (Gupta et al., 1992). Recently, some examples of dinuclear copper(II) complexes of dipyridophenazine or isophthalate have been reported (He & Han, 2006; Han & Ma, 2006; Han et al., 2007). The synthesis and crystal structure of a mononuclear copper(II) complex with a dipyridophenazine and a hydrogenisophthalato ligand is presented herein.

The title complex (I) (Fig. 1) is formed by one dipyridophenazine ligand, one NO3 ligand, one aqua ligand and one hydrogenisophthalato ligand coordinated to a CuII atom by three oxygen atoms and two nitrogen atoms in a slightly distorted square-pyramidal geometry. In the crystal structure, the mononuclear complex molecules are linked via intermolecular O—H···O hydrogen bonds (Table 2) forming one-dimensional chains along [001].

Experimental

A mixture of Cu(NO3)2.2H2O (0.5 mmol, 0.120 g), isophthalic acid (0.5 mmol, 0.084 g), dipyridophenazine (0.5 mmol, 0.141 g) and water (10 ml) was mixed in a 23 ml Teflon reactor, which was heated at 453 K for six days and then cooled to room temperature at a rate of 5 K h-1. Yield: 58%. CH&N analysis for C26H17N5O8Cu (found/calc): C, 53.05 (52.84), H, 2.94 (2.90), N, 11.96% (11.85%).

Refinement

H atoms were placed at calculated positions in the riding-model approximation (C—H = 0.93 Å, O—H = 0.82 Å) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Water H atoms were located in difference Fourier maps and refined with Uiso = 1.5eq(O), and distance restrains of O—H = 0.85 (2) and H···H = 1.39 (1) Å.

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Cu(C8H5O4)(NO3)(C18H10N4)(H2O)]Z = 2
Mr = 590.99F(000) = 602
Triclinic, P1Dx = 1.693 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8965 (17) ÅCell parameters from 2056 reflections
b = 11.295 (4) Åθ = 3.0–23.0°
c = 14.533 (6) ŵ = 1.01 mm1
α = 112.73 (3)°T = 293 K
β = 90.94 (3)°Block, green
γ = 102.60 (2)°0.37 × 0.32 × 0.24 mm
V = 1159.4 (6) Å3

Data collection

Bruker APEX area-detector diffractometer5180 independent reflections
Radiation source: fine-focus sealed tube3353 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −1→10
Tmin = 0.707, Tmax = 0.797k = −13→13
6320 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.1211P)2] where P = (Fo2 + 2Fc2)/3
5180 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.60 e Å3
39 restraintsΔρmin = −0.92 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu1−0.27167 (8)0.70493 (5)0.50884 (4)0.0396 (2)
C1−0.2797 (7)0.4150 (4)0.4401 (3)0.0445 (11)
H1A−0.22110.43540.50230.053*
C2−0.3193 (7)0.2855 (5)0.3703 (4)0.0497 (13)
H2A−0.29150.21950.38650.060*
C3−0.4002 (7)0.2552 (5)0.2769 (4)0.0428 (11)
H3A−0.42690.16840.22930.051*
C4−0.4426 (6)0.3552 (4)0.2532 (3)0.0345 (9)
C5−0.5234 (6)0.3340 (4)0.1558 (3)0.0342 (9)
C6−0.6258 (6)0.1988 (4)−0.0066 (3)0.0373 (10)
C7−0.6553 (7)0.0742 (4)−0.0887 (3)0.0432 (11)
H7A−0.61480.0059−0.08260.052*
C8−0.7424 (7)0.0553 (5)−0.1756 (4)0.0495 (12)
H8A−0.7629−0.0272−0.22870.059*
C9−0.8031 (7)0.1561 (5)−0.1884 (3)0.0484 (12)
H9A−0.86350.1398−0.24920.058*
C10−0.7739 (7)0.2774 (5)−0.1122 (4)0.0485 (12)
H10A−0.81330.3445−0.12110.058*
C11−0.6829 (6)0.3022 (4)−0.0187 (3)0.0385 (10)
C12−0.5768 (6)0.4395 (4)0.1423 (3)0.0345 (9)
C13−0.5442 (6)0.5688 (4)0.2256 (3)0.0370 (10)
C14−0.6011 (7)0.6754 (5)0.2202 (4)0.0449 (11)
H14A−0.66350.66600.16190.054*
C15−0.5634 (7)0.7937 (5)0.3021 (4)0.0491 (12)
H15A−0.60280.86460.30030.059*
C16−0.4675 (7)0.8076 (4)0.3869 (4)0.0469 (12)
H16A−0.43910.88970.44080.056*
C17−0.4550 (6)0.5890 (4)0.3143 (3)0.0345 (9)
C18−0.4036 (6)0.4815 (4)0.3297 (3)0.0336 (9)
C190.1568 (7)0.8271 (5)1.0427 (4)0.0454 (11)
C200.0882 (6)0.7361 (4)0.9360 (3)0.0374 (10)
C210.0985 (7)0.6051 (5)0.9002 (4)0.0456 (11)
H21A0.14740.57440.94260.055*
C220.0371 (7)0.5205 (5)0.8029 (4)0.0486 (12)
H22A0.04770.43350.77880.058*
C23−0.0412 (7)0.5655 (5)0.7404 (4)0.0441 (11)
H23A−0.08310.50810.67440.053*
C24−0.0572 (6)0.6956 (4)0.7756 (3)0.0352 (9)
C250.0095 (6)0.7805 (4)0.8736 (3)0.0364 (9)
H25A0.00130.86800.89780.044*
C26−0.1412 (6)0.7470 (4)0.7111 (3)0.0370 (10)
N1−0.3230 (5)0.5117 (4)0.4209 (3)0.0382 (8)
N2−0.4136 (5)0.7078 (3)0.3947 (3)0.0390 (8)
N3−0.5463 (5)0.2151 (3)0.0821 (3)0.0372 (8)
N4−0.6549 (5)0.4244 (4)0.0569 (3)0.0389 (8)
N50.0836 (6)0.8341 (4)0.4567 (3)0.0484 (10)
O10.2191 (6)0.7958 (4)1.1021 (3)0.0698 (12)
O20.1382 (6)0.9481 (3)1.0633 (2)0.0592 (10)
H2B0.14900.98961.12430.089*
O3−0.1920 (5)0.6681 (3)0.6212 (2)0.0463 (8)
O4−0.1588 (5)0.8630 (3)0.7480 (2)0.0508 (9)
O50.2236 (7)0.8977 (5)0.5054 (4)0.0954 (17)
O60.0214 (9)0.8751 (6)0.4026 (5)0.113 (2)
O70.0063 (5)0.7317 (4)0.4652 (4)0.0729 (12)
O1W−0.2595 (6)0.8908 (3)0.5905 (2)0.0525 (9)
H1WA−0.211 (8)0.953 (4)0.574 (4)0.079*
H1WB−0.250 (8)0.915 (5)0.6533 (16)0.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0579 (4)0.0285 (3)0.0284 (3)0.0089 (2)0.0000 (2)0.0082 (2)
C10.061 (3)0.037 (2)0.034 (2)0.014 (2)−0.003 (2)0.0122 (19)
C20.077 (4)0.036 (2)0.037 (2)0.022 (2)−0.004 (2)0.012 (2)
C30.053 (3)0.035 (2)0.040 (2)0.018 (2)−0.002 (2)0.0102 (19)
C40.038 (2)0.030 (2)0.036 (2)0.0091 (18)0.0024 (18)0.0132 (17)
C50.038 (2)0.033 (2)0.031 (2)0.0103 (18)0.0010 (17)0.0112 (17)
C60.039 (2)0.037 (2)0.034 (2)0.0111 (19)0.0034 (18)0.0112 (18)
C70.054 (3)0.035 (2)0.036 (2)0.014 (2)0.000 (2)0.0080 (19)
C80.061 (3)0.043 (3)0.036 (2)0.016 (2)−0.004 (2)0.004 (2)
C90.055 (3)0.052 (3)0.030 (2)0.012 (2)−0.009 (2)0.009 (2)
C100.061 (3)0.046 (3)0.039 (2)0.014 (2)−0.006 (2)0.017 (2)
C110.045 (3)0.039 (2)0.028 (2)0.006 (2)−0.0012 (18)0.0119 (18)
C120.040 (2)0.032 (2)0.032 (2)0.0112 (18)0.0012 (18)0.0120 (17)
C130.043 (3)0.029 (2)0.039 (2)0.0076 (18)0.0063 (19)0.0141 (18)
C140.058 (3)0.039 (2)0.040 (2)0.017 (2)−0.002 (2)0.016 (2)
C150.070 (3)0.033 (2)0.048 (3)0.022 (2)0.001 (2)0.014 (2)
C160.060 (3)0.031 (2)0.043 (3)0.013 (2)−0.006 (2)0.0077 (19)
C170.043 (3)0.027 (2)0.033 (2)0.0094 (18)0.0053 (18)0.0111 (17)
C180.039 (2)0.032 (2)0.031 (2)0.0107 (18)0.0029 (17)0.0120 (17)
C190.058 (3)0.044 (3)0.038 (2)0.022 (2)0.007 (2)0.016 (2)
C200.045 (3)0.036 (2)0.034 (2)0.0164 (19)0.0066 (19)0.0137 (18)
C210.058 (3)0.042 (2)0.043 (3)0.023 (2)0.006 (2)0.017 (2)
C220.064 (3)0.036 (2)0.044 (3)0.020 (2)0.005 (2)0.009 (2)
C230.053 (3)0.036 (2)0.038 (2)0.013 (2)0.006 (2)0.0075 (19)
C240.042 (2)0.032 (2)0.030 (2)0.0073 (18)0.0031 (18)0.0116 (17)
C250.045 (3)0.031 (2)0.032 (2)0.0123 (18)0.0029 (18)0.0100 (17)
C260.047 (3)0.032 (2)0.030 (2)0.0065 (19)0.0021 (18)0.0119 (17)
N10.050 (2)0.0337 (18)0.0276 (17)0.0102 (16)−0.0008 (16)0.0085 (15)
N20.049 (2)0.0276 (17)0.0358 (19)0.0090 (16)0.0033 (17)0.0078 (15)
N30.045 (2)0.0322 (18)0.0342 (19)0.0120 (16)0.0000 (16)0.0114 (15)
N40.047 (2)0.0344 (19)0.0336 (19)0.0096 (16)0.0002 (16)0.0124 (15)
N50.054 (3)0.041 (2)0.057 (3)0.015 (2)0.009 (2)0.023 (2)
O10.104 (3)0.067 (3)0.047 (2)0.045 (2)−0.011 (2)0.0204 (19)
O20.101 (3)0.0427 (19)0.0304 (17)0.024 (2)−0.0060 (18)0.0078 (15)
O30.074 (2)0.0329 (16)0.0273 (15)0.0122 (16)−0.0032 (15)0.0083 (12)
O40.085 (3)0.0340 (16)0.0269 (15)0.0175 (17)−0.0052 (16)0.0045 (13)
O50.079 (3)0.071 (3)0.118 (4)−0.008 (3)−0.017 (3)0.035 (3)
O60.140 (5)0.120 (5)0.116 (5)0.035 (4)−0.009 (4)0.086 (4)
O70.062 (3)0.056 (2)0.117 (4)0.015 (2)0.021 (2)0.052 (3)
O1W0.090 (3)0.0293 (16)0.0361 (17)0.0128 (17)−0.0001 (18)0.0122 (14)

Geometric parameters (Å, °)

Cu1—O1W1.952 (3)C14—C151.370 (7)
Cu1—O31.960 (3)C14—H14A0.9300
Cu1—N12.000 (4)C15—C161.373 (7)
Cu1—N22.001 (4)C15—H15A0.9300
Cu1—O72.284 (4)C16—N21.331 (6)
C1—N11.336 (6)C16—H16A0.9300
C1—C21.381 (6)C17—N21.363 (5)
C1—H1A0.9300C17—C181.454 (6)
C2—C31.374 (6)C18—N11.343 (5)
C2—H2A0.9300C19—O11.188 (6)
C3—C41.403 (6)C19—O21.324 (6)
C3—H3A0.9300C19—C201.501 (7)
C4—C181.392 (6)C20—C211.387 (6)
C4—C51.452 (6)C20—C251.389 (6)
C5—N31.327 (5)C21—C221.371 (7)
C5—C121.426 (6)C21—H21A0.9300
C6—N31.352 (5)C22—C231.394 (7)
C6—C111.409 (6)C22—H22A0.9300
C6—C71.418 (6)C23—C241.393 (6)
C7—C81.346 (7)C23—H23A0.9300
C7—H7A0.9300C24—C251.387 (6)
C8—C91.400 (7)C24—C261.491 (6)
C8—H8A0.9300C25—H25A0.9300
C9—C101.355 (7)C26—O41.250 (5)
C9—H9A0.9300C26—O31.261 (5)
C10—C111.425 (6)N5—O61.201 (6)
C10—H10A0.9300N5—O51.215 (6)
C11—N41.358 (5)N5—O71.236 (5)
C12—N41.310 (6)O2—H2B0.8200
C12—C131.458 (6)O1W—H1WA0.841 (19)
C13—C171.372 (6)O1W—H1WB0.842 (19)
C13—C141.402 (6)
O1W—Cu1—O394.58 (14)C14—C15—H15A120.0
O1W—Cu1—N1171.25 (17)C16—C15—H15A120.0
O3—Cu1—N189.65 (14)N2—C16—C15122.3 (4)
O1W—Cu1—N292.03 (15)N2—C16—H16A118.9
O3—Cu1—N2164.17 (16)C15—C16—H16A118.9
N1—Cu1—N282.02 (15)N2—C17—C13123.4 (4)
O1W—Cu1—O797.54 (17)N2—C17—C18115.2 (4)
O3—Cu1—O789.57 (16)C13—C17—C18121.4 (4)
N1—Cu1—O790.14 (16)N1—C18—C4123.9 (4)
N2—Cu1—O7103.82 (17)N1—C18—C17116.1 (4)
N1—C1—C2122.1 (4)C4—C18—C17120.0 (4)
N1—C1—H1A119.0O1—C19—O2123.7 (5)
C2—C1—H1A119.0O1—C19—C20125.0 (5)
C3—C2—C1119.4 (4)O2—C19—C20111.3 (4)
C3—C2—H2A120.3C21—C20—C25119.6 (4)
C1—C2—H2A120.3C21—C20—C19119.7 (4)
C2—C3—C4120.0 (4)C25—C20—C19120.7 (4)
C2—C3—H3A120.0C22—C21—C20120.6 (5)
C4—C3—H3A120.0C22—C21—H21A119.7
C18—C4—C3116.3 (4)C20—C21—H21A119.7
C18—C4—C5119.5 (4)C21—C22—C23119.6 (4)
C3—C4—C5124.2 (4)C21—C22—H22A120.2
N3—C5—C12122.1 (4)C23—C22—H22A120.2
N3—C5—C4118.1 (4)C24—C23—C22120.7 (4)
C12—C5—C4119.8 (4)C24—C23—H23A119.6
N3—C6—C11121.4 (4)C22—C23—H23A119.6
N3—C6—C7119.3 (4)C25—C24—C23118.7 (4)
C11—C6—C7119.2 (4)C25—C24—C26119.1 (4)
C8—C7—C6119.6 (4)C23—C24—C26122.2 (4)
C8—C7—H7A120.2C24—C25—C20120.7 (4)
C6—C7—H7A120.2C24—C25—H25A119.6
C7—C8—C9122.0 (4)C20—C25—H25A119.6
C7—C8—H8A119.0O4—C26—O3123.8 (4)
C9—C8—H8A119.0O4—C26—C24119.4 (4)
C10—C9—C8120.1 (4)O3—C26—C24116.8 (4)
C10—C9—H9A119.9C1—N1—C18118.3 (4)
C8—C9—H9A119.9C1—N1—Cu1128.4 (3)
C9—C10—C11120.1 (5)C18—N1—Cu1113.1 (3)
C9—C10—H10A120.0C16—N2—C17117.7 (4)
C11—C10—H10A120.0C16—N2—Cu1129.4 (3)
N4—C11—C6121.7 (4)C17—N2—Cu1112.9 (3)
N4—C11—C10119.3 (4)C5—N3—C6116.1 (4)
C6—C11—C10119.0 (4)C12—N4—C11116.4 (4)
N4—C12—C5122.1 (4)O6—N5—O5118.2 (5)
N4—C12—C13118.4 (4)O6—N5—O7121.5 (5)
C5—C12—C13119.5 (4)O5—N5—O7120.3 (5)
C17—C13—C14117.5 (4)C19—O2—H2B109.5
C17—C13—C12119.5 (4)C26—O3—Cu1128.9 (3)
C14—C13—C12123.0 (4)N5—O7—Cu1121.6 (3)
C15—C14—C13119.0 (4)Cu1—O1W—H1WA123 (4)
C15—C14—H14A120.5Cu1—O1W—H1WB117 (4)
C13—C14—H14A120.5H1WA—O1W—H1WB111 (3)
C14—C15—C16120.1 (4)
N1—C1—C2—C32.4 (8)C26—C24—C25—C20179.9 (4)
C1—C2—C3—C4−0.3 (8)C21—C20—C25—C24−0.8 (7)
C2—C3—C4—C18−2.2 (7)C19—C20—C25—C24−178.7 (4)
C2—C3—C4—C5178.2 (5)C25—C24—C26—O4−4.0 (7)
C18—C4—C5—N3174.7 (4)C23—C24—C26—O4176.9 (5)
C3—C4—C5—N3−5.6 (7)C25—C24—C26—O3176.6 (4)
C18—C4—C5—C12−5.8 (6)C23—C24—C26—O3−2.5 (7)
C3—C4—C5—C12173.9 (4)C2—C1—N1—C18−1.7 (7)
N3—C6—C7—C8176.6 (5)C2—C1—N1—Cu1−177.8 (4)
C11—C6—C7—C8−2.3 (7)C4—C18—N1—C1−1.0 (7)
C6—C7—C8—C91.1 (8)C17—C18—N1—C1177.3 (4)
C7—C8—C9—C100.4 (9)C4—C18—N1—Cu1175.7 (4)
C8—C9—C10—C11−0.6 (8)C17—C18—N1—Cu1−6.1 (5)
N3—C6—C11—N42.5 (7)O3—Cu1—N1—C1−10.2 (4)
C7—C6—C11—N4−178.7 (4)N2—Cu1—N1—C1−176.7 (4)
N3—C6—C11—C10−176.8 (4)O7—Cu1—N1—C179.3 (4)
C7—C6—C11—C102.0 (7)O3—Cu1—N1—C18173.5 (3)
C9—C10—C11—N4−179.9 (5)N2—Cu1—N1—C187.0 (3)
C9—C10—C11—C6−0.6 (8)O7—Cu1—N1—C18−96.9 (3)
N3—C5—C12—N41.5 (7)C15—C16—N2—C170.8 (8)
C4—C5—C12—N4−178.0 (4)C15—C16—N2—Cu1179.2 (4)
N3—C5—C12—C13−178.5 (4)C13—C17—N2—C162.0 (7)
C4—C5—C12—C132.0 (6)C18—C17—N2—C16−175.8 (4)
N4—C12—C13—C17−176.8 (4)C13—C17—N2—Cu1−176.7 (4)
C5—C12—C13—C173.1 (7)C18—C17—N2—Cu15.5 (5)
N4—C12—C13—C143.7 (7)O1W—Cu1—N2—C161.2 (5)
C5—C12—C13—C14−176.3 (4)O3—Cu1—N2—C16115.8 (6)
C17—C13—C14—C150.9 (7)N1—Cu1—N2—C16174.7 (5)
C12—C13—C14—C15−179.6 (5)O7—Cu1—N2—C16−97.1 (5)
C13—C14—C15—C161.6 (8)O1W—Cu1—N2—C17179.7 (3)
C14—C15—C16—N2−2.6 (9)O3—Cu1—N2—C17−65.7 (6)
C14—C13—C17—N2−2.8 (7)N1—Cu1—N2—C17−6.8 (3)
C12—C13—C17—N2177.7 (4)O7—Cu1—N2—C1781.4 (3)
C14—C13—C17—C18174.9 (4)C12—C5—N3—C6−1.0 (6)
C12—C13—C17—C18−4.6 (7)C4—C5—N3—C6178.5 (4)
C3—C4—C18—N12.9 (7)C11—C6—N3—C5−0.9 (6)
C5—C4—C18—N1−177.4 (4)C7—C6—N3—C5−179.7 (4)
C3—C4—C18—C17−175.3 (4)C5—C12—N4—C110.1 (7)
C5—C4—C18—C174.4 (6)C13—C12—N4—C11−179.9 (4)
N2—C17—C18—N10.4 (6)C6—C11—N4—C12−2.0 (7)
C13—C17—C18—N1−177.5 (4)C10—C11—N4—C12177.3 (4)
N2—C17—C18—C4178.7 (4)O4—C26—O3—Cu111.6 (7)
C13—C17—C18—C40.8 (7)C24—C26—O3—Cu1−169.0 (3)
O1—C19—C20—C21−1.2 (8)O1W—Cu1—O3—C26−4.4 (4)
O2—C19—C20—C21179.2 (5)N1—Cu1—O3—C26−176.7 (4)
O1—C19—C20—C25176.7 (5)N2—Cu1—O3—C26−118.7 (6)
O2—C19—C20—C25−2.9 (7)O7—Cu1—O3—C2693.1 (4)
C25—C20—C21—C222.3 (8)O6—N5—O7—Cu1−54.7 (7)
C19—C20—C21—C22−179.8 (5)O5—N5—O7—Cu1123.5 (5)
C20—C21—C22—C23−2.0 (8)O1W—Cu1—O7—N5−30.2 (5)
C21—C22—C23—C240.2 (8)O3—Cu1—O7—N5−124.7 (4)
C22—C23—C24—C251.3 (7)N1—Cu1—O7—N5145.6 (4)
C22—C23—C24—C26−179.6 (5)N2—Cu1—O7—N563.8 (5)
C23—C24—C25—C20−1.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.84 (2)2.08 (3)2.856 (7)153 (5)
O1W—H1WA···O5i0.84 (2)2.41 (3)3.165 (6)151 (6)
O1W—H1WB···O40.84 (2)1.88 (4)2.565 (5)138 (6)
O2—H2B···O4ii0.821.942.722 (4)159

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2688).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gupta, N., Grover, N., Neyhart, G. A., Liang, W., Singh, P. & Thorp, H. H. (1992). Angew. Chem. Int. Ed.31, 1048–1050.
  • Han, Z. B., He, Y. K., Ge, C. H., Ribas, J. & Xu, L. (2007). Dalton Trans. pp. 3020–3024. [PubMed]
  • Han, Z.-B. & Ma, Y. (2006). Acta Cryst. E62, m2236–m2237.
  • Hartshorn, R. M. & Barton, J. K. (1992). J. Am. Chem. Soc.114, 5919–5925.
  • He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676–m2677.
  • Murphy, C. J., Arkin, M. R., Jenkins, Y., Ghatlia, N. D., Bossmann, S. H., Turro, N. J. & Barton, J. K. (1993). Science, 262, 1025–1029. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography