PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1993.
Published online 2008 September 24. doi:  10.1107/S1600536808029875
PMCID: PMC2959360

Methyl 2-benzyl-5-[1-(4-methoxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-4-nitro-3-phenyl­pyrrolidine-2-carboxyl­ate

Abstract

In the title mol­ecule, C35H33N3O6, the pyrrolidine ring adopts a twist conformation. The mol­ecules are paired into centrosymmetric dimers by weak inter­molecular C—H(...)O hydrogen bonds. The dimers inter­act further again via C—H(...)O hydrogen bonds and N—H(...)O intramolecular interaction also stabilize the crystal packing.

Related literature

For the pharmacological properties of β-lactam derivatives, see: Alcaide et al. (2000 [triangle]). For general background, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]); Beddoes et al. (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1993-scheme1.jpg

Experimental

Crystal data

  • C35H33N3O6
  • M r = 591.64
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1993-efi1.jpg
  • a = 10.1727 (2) Å
  • b = 10.4210 (2) Å
  • c = 15.1680 (3) Å
  • α = 91.833 (1)°
  • β = 106.154 (1)°
  • γ = 102.536 (1)°
  • V = 1500.31 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.978, T max = 0.987
  • 29479 measured reflections
  • 5290 independent reflections
  • 4498 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.112
  • S = 1.02
  • 5290 reflections
  • 400 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029875/cv2439sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029875/cv2439Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his kind help in data collection.

supplementary crystallographic information

Comment

An extensive use of common β-lactam antibiotics, such as penicillin and cephalosporins, in medicine has resulted in an increasing number of resistant bacteria through mutation and β-lactamase gene transfer. The importance and structural diversity of biologically active β-lactam antibiotics, the most widely employed family of antimicrobial agents led to the development of efficient approaches for the construction of appropriately substituted 2-azetidinones (Alcaide et al., 2000). As a contribution to this field, we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the pyrrolidine ring adopts a twist conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameter (Nardelli, 1983) for this ring are q2 = 0.382 (2) Å, π = 340.9 (2)° and Δ2(C3) = 0.48 (14)°, respectively. The sum of angles at N1 of the pyrrolidine ring system [327.14 (12)°] is in accordance with sp3 hybridization (Beddoes et al., 1986). The β-lactam ring is planar and the keto atom O5 deviates from this plane at 0.049 (1) Å.

The weak intermolecular C—H···O hydrogen bonds (Table 1) contribute to the crystal packing stability.

Experimental

β-Lactam aldehyde (1.0 mol) was treated with phenyl alanine methyl ester hydrochloride in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2.0 g) in dry chloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine was then stirred with silver (I) acetate and nitrostyene (1.0 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) again at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatogaraphy on silicagel (100–200 mesh), with hexane and ethyl acetate (7:3) as eluent to give the product. The compound was recrystallized from ethyl acetate.

Refinement

C-bound H atoms were geometrically positioned (C—H=0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The H atom attached to N was located from difference Fourier map and isotropically refined with bond restraint N—H=0.90 (2) Å.

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C35H33N3O6Z = 2
Mr = 591.64F(000) = 624
Triclinic, P1Dx = 1.310 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1727 (2) ÅCell parameters from 4523 reflections
b = 10.4210 (2) Åθ = 2.1–25.0°
c = 15.1680 (3) ŵ = 0.09 mm1
α = 91.833 (1)°T = 293 K
β = 106.154 (1)°Block, colourless
γ = 102.536 (1)°0.23 × 0.20 × 0.18 mm
V = 1500.31 (5) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer5290 independent reflections
Radiation source: fine-focus sealed tube4498 reflections with I > 2σ(I)
graphiteRint = 0.022
ω and [var phi] scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −12→12
Tmin = 0.978, Tmax = 0.987k = −12→12
29479 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0505P)2 + 0.5651P] where P = (Fo2 + 2Fc2)/3
5290 reflections(Δ/σ)max = 0.009
400 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.23296 (14)1.11254 (12)0.12037 (10)0.0626 (4)
O20.05010 (12)0.97536 (12)0.14730 (9)0.0516 (3)
O30.34127 (15)0.89947 (15)−0.01081 (9)0.0693 (4)
O40.43868 (18)0.73840 (17)−0.01654 (10)0.0826 (5)
O50.89861 (13)0.81334 (13)0.32648 (10)0.0665 (4)
O60.83342 (17)1.40874 (13)0.47301 (9)0.0727 (4)
N10.41420 (13)0.96169 (12)0.20111 (9)0.0360 (3)
H10.4247 (19)1.0180 (18)0.1586 (13)0.050 (5)*
C20.26396 (15)0.91317 (14)0.19096 (10)0.0344 (3)
C30.21203 (15)0.78623 (14)0.11656 (10)0.0351 (3)
H30.16510.81530.05770.042*
C40.34889 (15)0.75799 (14)0.10697 (10)0.0352 (3)
H40.34810.66420.11140.042*
C50.46471 (14)0.84462 (14)0.18892 (9)0.0333 (3)
H50.46410.79750.24370.040*
C60.18470 (16)1.01459 (14)0.14978 (10)0.0393 (3)
C7−0.0397 (2)1.0629 (2)0.11332 (17)0.0759 (6)
H7A−0.03551.12420.16320.114*
H7B−0.13481.01250.08730.114*
H7C−0.00871.11050.06680.114*
C80.24250 (17)0.88720 (15)0.28635 (10)0.0390 (3)
H8A0.14510.84270.27820.047*
H8B0.30110.82920.31530.047*
C90.27898 (17)1.01341 (15)0.34880 (10)0.0421 (4)
C100.4168 (2)1.0744 (2)0.39661 (12)0.0592 (5)
H100.48931.03580.39230.071*
C110.4474 (3)1.1928 (2)0.45082 (14)0.0774 (7)
H110.54041.23300.48270.093*
C120.3418 (3)1.2512 (2)0.45787 (14)0.0780 (7)
H120.36321.33130.49360.094*
C130.2051 (3)1.1913 (2)0.41225 (15)0.0690 (6)
H130.13291.23000.41730.083*
C140.1743 (2)1.07297 (17)0.35862 (13)0.0533 (4)
H140.08081.03230.32830.064*
C150.11103 (17)0.66599 (15)0.13188 (12)0.0450 (4)
C16−0.02995 (19)0.64235 (19)0.08179 (17)0.0655 (6)
H16−0.06100.70280.04210.079*
C17−0.1244 (3)0.5302 (3)0.0903 (2)0.0917 (9)
H17−0.21850.51490.05580.110*
C18−0.0802 (3)0.4412 (3)0.1494 (2)0.0987 (10)
H18−0.14450.36640.15590.118*
C190.0593 (3)0.4625 (2)0.19912 (17)0.0898 (9)
H190.08960.40150.23860.108*
C200.15546 (12)0.57555 (12)0.19041 (7)0.0653 (5)
H200.24980.58990.22420.078*
N210.37621 (12)0.80108 (12)0.01871 (7)0.0463 (3)
C220.61299 (15)0.86856 (14)0.18124 (10)0.0358 (3)
H220.62250.91480.12730.043*
C230.68163 (16)0.74593 (15)0.18950 (11)0.0409 (4)
H230.72000.73300.13820.049*
C240.79266 (16)0.82884 (16)0.27273 (12)0.0453 (4)
N250.72602 (13)0.92975 (12)0.26579 (9)0.0400 (3)
C260.60056 (16)0.61819 (15)0.21114 (11)0.0398 (3)
C270.5883 (2)0.60247 (17)0.29894 (12)0.0544 (4)
H270.63500.67000.34600.065*
C280.5075 (2)0.48762 (19)0.31760 (14)0.0665 (6)
H280.49980.47890.37690.080*
C290.4386 (2)0.38636 (18)0.24931 (14)0.0612 (5)
H290.38330.30970.26190.073*
C300.45205 (19)0.39919 (17)0.16239 (13)0.0543 (4)
H300.40660.33060.11590.065*
C310.53301 (17)0.51375 (16)0.14369 (12)0.0468 (4)
H310.54230.52080.08460.056*
C320.75777 (15)1.05282 (15)0.31897 (10)0.0387 (3)
C330.81676 (18)1.06067 (17)0.41328 (11)0.0492 (4)
H330.83680.98590.44080.059*
C340.84635 (19)1.17897 (18)0.46717 (12)0.0535 (4)
H340.88721.18410.53060.064*
C350.81481 (19)1.28903 (17)0.42629 (12)0.0499 (4)
C360.75824 (19)1.28152 (17)0.33134 (12)0.0519 (4)
H360.73931.35640.30360.062*
C370.73000 (17)1.16421 (16)0.27817 (11)0.0449 (4)
H370.69211.15980.21450.054*
C380.8872 (3)1.4202 (2)0.57069 (15)0.0889 (8)
H38A0.82291.36120.59540.133*
H38B0.89801.50930.59490.133*
H38C0.97691.39760.58780.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0623 (8)0.0387 (7)0.0866 (10)0.0095 (6)0.0213 (7)0.0223 (6)
O20.0399 (6)0.0535 (7)0.0648 (8)0.0186 (5)0.0139 (5)0.0148 (6)
O30.0656 (9)0.0890 (10)0.0612 (8)0.0237 (8)0.0238 (7)0.0355 (8)
O40.0925 (11)0.1026 (12)0.0673 (9)0.0283 (10)0.0449 (9)−0.0130 (8)
O50.0401 (7)0.0584 (8)0.0846 (10)0.0125 (6)−0.0084 (6)0.0024 (7)
O60.1005 (11)0.0491 (8)0.0573 (8)0.0088 (7)0.0136 (7)−0.0094 (6)
N10.0327 (7)0.0317 (7)0.0411 (7)0.0024 (5)0.0109 (5)0.0018 (5)
C20.0316 (7)0.0306 (7)0.0388 (8)0.0036 (6)0.0095 (6)0.0020 (6)
C30.0315 (7)0.0329 (8)0.0378 (8)0.0040 (6)0.0083 (6)0.0006 (6)
C40.0326 (8)0.0333 (8)0.0366 (8)0.0046 (6)0.0079 (6)0.0009 (6)
C50.0318 (7)0.0334 (7)0.0320 (7)0.0040 (6)0.0078 (6)0.0028 (6)
C60.0422 (9)0.0321 (8)0.0410 (8)0.0069 (7)0.0099 (7)0.0007 (6)
C70.0667 (13)0.0884 (16)0.0871 (15)0.0484 (12)0.0209 (11)0.0243 (12)
C80.0400 (8)0.0355 (8)0.0433 (8)0.0080 (6)0.0155 (7)0.0062 (6)
C90.0494 (9)0.0405 (8)0.0364 (8)0.0042 (7)0.0174 (7)0.0052 (6)
C100.0550 (11)0.0741 (13)0.0402 (9)0.0027 (9)0.0111 (8)−0.0032 (8)
C110.0784 (15)0.0843 (16)0.0468 (11)−0.0218 (13)0.0156 (10)−0.0148 (10)
C120.121 (2)0.0534 (12)0.0555 (12)−0.0122 (13)0.0460 (13)−0.0123 (9)
C130.1007 (17)0.0483 (11)0.0701 (13)0.0140 (11)0.0481 (13)−0.0011 (9)
C140.0611 (11)0.0469 (10)0.0563 (10)0.0085 (8)0.0278 (9)0.0004 (8)
C150.0461 (9)0.0346 (8)0.0533 (9)−0.0028 (7)0.0239 (8)−0.0086 (7)
C160.0402 (10)0.0508 (11)0.1018 (16)−0.0018 (8)0.0269 (10)−0.0182 (10)
C170.0582 (14)0.0649 (15)0.147 (3)−0.0187 (12)0.0532 (15)−0.0343 (16)
C180.112 (2)0.0620 (15)0.121 (2)−0.0379 (15)0.080 (2)−0.0239 (15)
C190.143 (3)0.0435 (11)0.0733 (15)−0.0174 (12)0.0472 (16)−0.0008 (10)
C200.0855 (15)0.0458 (10)0.0552 (11)−0.0057 (9)0.0221 (10)0.0024 (8)
N210.0357 (7)0.0606 (9)0.0356 (7)0.0024 (6)0.0071 (6)−0.0049 (6)
C220.0321 (8)0.0377 (8)0.0335 (7)0.0021 (6)0.0081 (6)0.0027 (6)
C230.0353 (8)0.0430 (9)0.0446 (8)0.0088 (7)0.0128 (7)−0.0002 (7)
C240.0314 (8)0.0437 (9)0.0556 (10)0.0053 (7)0.0070 (7)0.0049 (7)
N250.0313 (6)0.0392 (7)0.0417 (7)0.0039 (5)0.0021 (5)0.0000 (5)
C260.0378 (8)0.0364 (8)0.0442 (8)0.0113 (6)0.0089 (6)−0.0004 (6)
C270.0722 (12)0.0402 (9)0.0420 (9)0.0042 (8)0.0101 (8)−0.0016 (7)
C280.0963 (16)0.0480 (11)0.0496 (10)0.0039 (10)0.0220 (10)0.0089 (8)
C290.0716 (13)0.0393 (10)0.0695 (13)0.0046 (9)0.0220 (10)0.0065 (8)
C300.0542 (11)0.0395 (9)0.0630 (11)0.0047 (8)0.0139 (9)−0.0107 (8)
C310.0459 (9)0.0468 (9)0.0470 (9)0.0100 (7)0.0147 (7)−0.0069 (7)
C320.0301 (7)0.0392 (8)0.0411 (8)0.0009 (6)0.0073 (6)0.0020 (6)
C330.0527 (10)0.0442 (9)0.0423 (9)0.0062 (8)0.0038 (7)0.0067 (7)
C340.0576 (11)0.0546 (10)0.0370 (9)0.0031 (8)0.0038 (7)0.0007 (7)
C350.0508 (10)0.0430 (9)0.0480 (9)−0.0006 (8)0.0117 (8)−0.0037 (7)
C360.0572 (11)0.0418 (9)0.0508 (10)0.0072 (8)0.0096 (8)0.0077 (7)
C370.0459 (9)0.0437 (9)0.0373 (8)0.0029 (7)0.0056 (7)0.0050 (7)
C380.131 (2)0.0645 (14)0.0560 (13)−0.0010 (14)0.0233 (13)−0.0162 (10)

Geometric parameters (Å, °)

O1—C61.1896 (19)C16—C171.377 (3)
O2—C61.3307 (19)C16—H160.9300
O2—C71.436 (2)C17—C181.370 (4)
O3—N211.2154 (17)C17—H170.9300
O4—N211.2098 (18)C18—C191.375 (4)
O5—C241.203 (2)C18—H180.9300
O6—C351.364 (2)C19—C201.394 (2)
O6—C381.421 (3)C19—H190.9300
N1—C51.4482 (19)C20—H200.9300
N1—C21.4642 (18)C22—N251.4773 (18)
N1—H10.898 (19)C22—C231.577 (2)
C2—C61.513 (2)C22—H220.9800
C2—C81.546 (2)C23—C261.504 (2)
C2—C31.6036 (19)C23—C241.526 (2)
C3—C151.507 (2)C23—H230.9800
C3—C41.528 (2)C24—N251.361 (2)
C3—H30.9800N25—C321.417 (2)
C4—N211.5040 (18)C26—C271.383 (2)
C4—C51.5491 (19)C26—C311.384 (2)
C4—H40.9800C27—C281.383 (3)
C5—C221.512 (2)C27—H270.9300
C5—H50.9800C28—C291.372 (3)
C7—H7A0.9600C28—H280.9300
C7—H7B0.9600C29—C301.370 (3)
C7—H7C0.9600C29—H290.9300
C8—C91.509 (2)C30—C311.382 (2)
C8—H8A0.9700C30—H300.9300
C8—H8B0.9700C31—H310.9300
C9—C141.382 (2)C32—C371.379 (2)
C9—C101.383 (2)C32—C331.381 (2)
C10—C111.386 (3)C33—C341.384 (2)
C10—H100.9300C33—H330.9300
C11—C121.371 (4)C34—C351.378 (3)
C11—H110.9300C34—H340.9300
C12—C131.365 (3)C35—C361.387 (2)
C12—H120.9300C36—C371.372 (2)
C13—C141.381 (3)C36—H360.9300
C13—H130.9300C37—H370.9300
C14—H140.9300C38—H38A0.9600
C15—C201.377 (2)C38—H38B0.9600
C15—C161.387 (3)C38—H38C0.9600
C6—O2—C7117.27 (15)C17—C18—H18120.0
C35—O6—C38117.72 (16)C19—C18—H18120.0
C5—N1—C2105.14 (11)C18—C19—C20120.0 (2)
C5—N1—H1112.7 (12)C18—C19—H19120.0
C2—N1—H1109.2 (12)C20—C19—H19120.0
N1—C2—C6109.82 (12)C15—C20—C19120.13 (17)
N1—C2—C8109.67 (12)C15—C20—H20119.9
C6—C2—C8109.45 (12)C19—C20—H20119.9
N1—C2—C3105.46 (11)O4—N21—O3123.59 (14)
C6—C2—C3107.03 (11)O4—N21—C4117.29 (14)
C8—C2—C3115.26 (11)O3—N21—C4119.01 (12)
C15—C3—C4113.48 (12)N25—C22—C5115.57 (12)
C15—C3—C2119.09 (12)N25—C22—C2386.76 (11)
C4—C3—C2103.76 (11)C5—C22—C23116.52 (12)
C15—C3—H3106.6N25—C22—H22111.9
C4—C3—H3106.6C5—C22—H22111.9
C2—C3—H3106.6C23—C22—H22111.9
N21—C4—C3111.73 (12)C26—C23—C24114.59 (13)
N21—C4—C5108.44 (11)C26—C23—C22118.28 (12)
C3—C4—C5104.15 (11)C24—C23—C2284.95 (11)
N21—C4—H4110.8C26—C23—H23112.1
C3—C4—H4110.8C24—C23—H23112.1
C5—C4—H4110.8C22—C23—H23112.1
N1—C5—C22115.85 (12)O5—C24—N25132.13 (16)
N1—C5—C4104.92 (11)O5—C24—C23134.79 (16)
C22—C5—C4115.49 (12)N25—C24—C2393.07 (12)
N1—C5—H5106.6C24—N25—C32132.30 (13)
C22—C5—H5106.6C24—N25—C2295.07 (12)
C4—C5—H5106.6C32—N25—C22132.58 (12)
O1—C6—O2124.43 (15)C27—C26—C31117.78 (15)
O1—C6—C2125.63 (15)C27—C26—C23120.89 (14)
O2—C6—C2109.88 (12)C31—C26—C23121.31 (14)
O2—C7—H7A109.5C28—C27—C26120.84 (16)
O2—C7—H7B109.5C28—C27—H27119.6
H7A—C7—H7B109.5C26—C27—H27119.6
O2—C7—H7C109.5C29—C28—C27120.53 (18)
H7A—C7—H7C109.5C29—C28—H28119.7
H7B—C7—H7C109.5C27—C28—H28119.7
C9—C8—C2111.98 (12)C30—C29—C28119.38 (17)
C9—C8—H8A109.2C30—C29—H29120.3
C2—C8—H8A109.2C28—C29—H29120.3
C9—C8—H8B109.2C29—C30—C31120.16 (16)
C2—C8—H8B109.2C29—C30—H30119.9
H8A—C8—H8B107.9C31—C30—H30119.9
C14—C9—C10117.83 (16)C30—C31—C26121.27 (16)
C14—C9—C8120.43 (15)C30—C31—H31119.4
C10—C9—C8121.74 (16)C26—C31—H31119.4
C9—C10—C11120.4 (2)C37—C32—C33119.64 (15)
C9—C10—H10119.8C37—C32—N25121.12 (14)
C11—C10—H10119.8C33—C32—N25119.24 (14)
C12—C11—C10120.6 (2)C32—C33—C34120.50 (16)
C12—C11—H11119.7C32—C33—H33119.8
C10—C11—H11119.7C34—C33—H33119.8
C13—C12—C11119.76 (19)C35—C34—C33119.57 (16)
C13—C12—H12120.1C35—C34—H34120.2
C11—C12—H12120.1C33—C34—H34120.2
C12—C13—C14119.7 (2)O6—C35—C34124.53 (16)
C12—C13—H13120.1O6—C35—C36115.68 (16)
C14—C13—H13120.1C34—C35—C36119.79 (16)
C13—C14—C9121.67 (19)C37—C36—C35120.38 (16)
C13—C14—H14119.2C37—C36—H36119.8
C9—C14—H14119.2C35—C36—H36119.8
C20—C15—C16119.00 (15)C36—C37—C32120.09 (15)
C20—C15—C3122.10 (14)C36—C37—H37120.0
C16—C15—C3118.82 (17)C32—C37—H37120.0
C17—C16—C15120.7 (2)O6—C38—H38A109.5
C17—C16—H16119.7O6—C38—H38B109.5
C15—C16—H16119.7H38A—C38—H38B109.5
C18—C17—C16120.2 (3)O6—C38—H38C109.5
C18—C17—H17119.9H38A—C38—H38C109.5
C16—C17—H17119.9H38B—C38—H38C109.5
C17—C18—C19120.0 (2)
C5—N1—C2—C6−148.46 (12)C3—C4—N21—O4−148.71 (14)
C5—N1—C2—C891.23 (13)C5—C4—N21—O497.06 (16)
C5—N1—C2—C3−33.45 (14)C3—C4—N21—O334.86 (17)
N1—C2—C3—C15139.14 (14)C5—C4—N21—O3−79.36 (16)
C6—C2—C3—C15−103.94 (15)N1—C5—C22—N2567.52 (16)
C8—C2—C3—C1518.03 (19)C4—C5—C22—N25−169.25 (12)
N1—C2—C3—C411.85 (14)N1—C5—C22—C23167.24 (12)
C6—C2—C3—C4128.77 (12)C4—C5—C22—C23−69.53 (16)
C8—C2—C3—C4−109.26 (13)N25—C22—C23—C26112.64 (14)
C15—C3—C4—N21124.95 (13)C5—C22—C23—C26−4.42 (19)
C2—C3—C4—N21−104.33 (12)N25—C22—C23—C24−2.62 (11)
C15—C3—C4—C5−118.20 (13)C5—C22—C23—C24−119.68 (13)
C2—C3—C4—C512.52 (14)C26—C23—C24—O562.9 (3)
C2—N1—C5—C22170.75 (12)C22—C23—C24—O5−178.2 (2)
C2—N1—C5—C442.13 (14)C26—C23—C24—N25−116.01 (14)
N21—C4—C5—N185.54 (13)C22—C23—C24—N252.85 (12)
C3—C4—C5—N1−33.58 (14)O5—C24—N25—C320.4 (3)
N21—C4—C5—C22−43.29 (16)C23—C24—N25—C32179.33 (15)
C3—C4—C5—C22−162.40 (12)O5—C24—N25—C22178.0 (2)
C7—O2—C6—O1−5.1 (3)C23—C24—N25—C22−3.04 (12)
C7—O2—C6—C2177.64 (15)C5—C22—N25—C24120.89 (14)
N1—C2—C6—O17.7 (2)C23—C22—N25—C242.94 (12)
C8—C2—C6—O1128.15 (17)C5—C22—N25—C32−61.5 (2)
C3—C2—C6—O1−106.30 (18)C23—C22—N25—C32−179.44 (16)
N1—C2—C6—O2−175.08 (12)C24—C23—C26—C2723.7 (2)
C8—C2—C6—O2−54.63 (16)C22—C23—C26—C27−74.1 (2)
C3—C2—C6—O270.92 (15)C24—C23—C26—C31−157.88 (15)
N1—C2—C8—C967.48 (16)C22—C23—C26—C31104.29 (17)
C6—C2—C8—C9−53.05 (16)C31—C26—C27—C28−2.0 (3)
C3—C2—C8—C9−173.72 (12)C23—C26—C27—C28176.51 (17)
C2—C8—C9—C1498.48 (17)C26—C27—C28—C290.5 (3)
C2—C8—C9—C10−80.41 (19)C27—C28—C29—C300.9 (3)
C14—C9—C10—C11−1.3 (3)C28—C29—C30—C31−0.7 (3)
C8—C9—C10—C11177.64 (16)C29—C30—C31—C26−0.8 (3)
C9—C10—C11—C120.0 (3)C27—C26—C31—C302.1 (3)
C10—C11—C12—C131.0 (3)C23—C26—C31—C30−176.33 (15)
C11—C12—C13—C14−0.6 (3)C24—N25—C32—C37143.82 (17)
C12—C13—C14—C9−0.7 (3)C22—N25—C32—C37−33.0 (2)
C10—C9—C14—C131.7 (3)C24—N25—C32—C33−36.6 (2)
C8—C9—C14—C13−177.26 (16)C22—N25—C32—C33146.66 (16)
C4—C3—C15—C2041.98 (19)C37—C32—C33—C340.9 (3)
C2—C3—C15—C20−80.61 (18)N25—C32—C33—C34−178.74 (15)
C4—C3—C15—C16−134.62 (15)C32—C33—C34—C350.9 (3)
C2—C3—C15—C16102.79 (17)C38—O6—C35—C34−0.9 (3)
C20—C15—C16—C170.0 (3)C38—O6—C35—C36178.2 (2)
C3—C15—C16—C17176.73 (17)C33—C34—C35—O6176.89 (17)
C15—C16—C17—C180.8 (3)C33—C34—C35—C36−2.2 (3)
C16—C17—C18—C19−1.2 (4)O6—C35—C36—C37−177.39 (16)
C17—C18—C19—C200.9 (4)C34—C35—C36—C371.8 (3)
C16—C15—C20—C19−0.3 (2)C35—C36—C37—C320.0 (3)
C3—C15—C20—C19−176.93 (16)C33—C32—C37—C36−1.3 (2)
C18—C19—C20—C15−0.1 (3)N25—C32—C37—C36178.29 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.898 (19)2.314 (18)2.7378 (18)108.7 (14)
C7—H7B···O3i0.962.483.145 (2)126.
C14—H14···O5ii0.932.603.359 (2)139.
C30—H30···O1iii0.932.573.240 (2)129.

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2439).

References

  • Alcaide, B., Almendros, P., Salgado, N. R. & Rodrigues-Vicente, A. (2000). J. Org. Chem.65, 4453–4455. [PubMed]
  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography