PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1971.
Published online 2008 September 20. doi:  10.1107/S160053680802802X
PMCID: PMC2959347

(4-tert-Butyl­phenyl)­acetic acid

Abstract

In the title compound, C12H16O2, the plane of the carboxylic acid group is almost perpendicular to the benzene ring [dihedral angle 80.9 (3)°] and the tert-butyl unit is disordered over two sets of sites in a 0.503 (6):0.497 (6) ratio. In the crystal structure, centrosymmetric dimers arise from pairs of O—H(...)O hydrogen bonds involving the carboxylic acid groups.

Related literature

For general background, see: Liu et al. (2006 [triangle]). For a related structure, see: van Koningsveld (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1971-scheme1.jpg

Experimental

Crystal data

  • C12H16O2
  • M r = 192.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1971-efi1.jpg
  • a = 11.209 (2) Å
  • b = 12.442 (3) Å
  • c = 17.250 (5) Å
  • β = 104.625 (12)°
  • V = 2327.8 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.30 × 0.23 × 0.16 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: none
  • 5829 measured reflections
  • 2047 independent reflections
  • 1375 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.220
  • S = 1.06
  • 2047 reflections
  • 131 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802802X/hb2766sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802802X/hb2766Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

supplementary crystallographic information

Comment

As part of investigation on the nature of aromatic stacking (Liu et al., 2006), the title compound, (I), has recently been prepared in Prof. Liu's laboratory by the hydrolization reaction of 2-(4-tert-butylphenyl)-1-morpholinoethanethione. Herein we present its X-ray structure (Fig. 1).

The C8—O1 bond distance of 1.309 (3) Å is significantly longer than the C8—O2 bond distance of 1.191 (3) Å. The carboxyl group is nearly perpendicular to the benzene plane, the dihedral angle being 80.9 (3)°. The adjacent molecules are linked together via O—H···O hydrogen bonding (Table 1) to form a centrosymmetric supramolecular dimer as shown in Fig. 2, which is comparable to that found in 4-tert-butylbenzoic acid (van Koningsveld, 1982).

Experimental

The title compound was prepared by a hydrolization reaction of 2-(4-tert-butylphenyl)-1-morpholinoethanethione (55 g) in a solution containing CH3COOH (150 ml), H2SO4 (25 ml, 98%) and water (30 ml) at 390 K until the reaction mixture changed colour to dark-green. After cooling to room temperature, the solid product was separated from the reaction mixture, and colourless prisms of (I) were obtained by recrystallization of the solid product from an ethanol–water solution (1:1 v/v) after 2 months.

Refinement

The carboxyl H atom was located in a difference Fourier map and refined as riding in its as-found relative position with Uiso(H) = 1.5Ueq(O). The methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density with Uiso(H) = 1.5Ueq(C). The other H atoms were placed in calculated positions with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic), and refined in riding mode with Uiso(H) = 1.2Ueq(C). The tert-butyl group is disordered over two positions. Occupancies were initially refined and converged to 0.503 (6) and 0.497 (6), respectively; in the final cycles of refinement, the occupancies were fixed at 0.5, and displacement parameters for the disordered carbon atoms were constrained to be identical.

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Double dashed lines indicate one of disordered components.
Fig. 2.
The unit cell packing diagram showing the supra-molecular dimeric structure linked by the hydrogen bonding (dashed lines).

Crystal data

C12H16O2F(000) = 832
Mr = 192.25Dx = 1.097 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2180 reflections
a = 11.209 (2) Åθ = 2.8–25.0°
b = 12.442 (3) ŵ = 0.07 mm1
c = 17.250 (5) ÅT = 295 K
β = 104.625 (12)°Prism, colourless
V = 2327.8 (10) Å30.30 × 0.23 × 0.16 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer1375 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
graphiteθmax = 25.0°, θmin = 2.4°
Detector resolution: 10 pixels mm-1h = −13→12
[var phi] and ω scansk = −11→14
5829 measured reflectionsl = −20→17
2047 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0943P)2 + 2.2585P] where P = (Fo2 + 2Fc2)/3
2047 reflections(Δ/σ)max = 0.003
131 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.3924 (2)0.7974 (2)0.56682 (15)0.1086 (10)
H10.30880.79590.56070.163*
O20.35115 (18)0.70221 (19)0.45614 (13)0.0801 (7)
C10.6042 (2)0.6780 (3)0.45859 (19)0.0733 (9)
C20.6468 (3)0.5756 (3)0.4707 (2)0.0904 (11)
H20.64480.54030.51790.108*
C30.6930 (3)0.5233 (3)0.41409 (19)0.0838 (10)
H30.72160.45320.42440.101*
C40.6984 (2)0.5702 (2)0.34325 (15)0.0582 (7)
C50.6512 (3)0.6719 (3)0.33048 (18)0.0714 (9)
H50.64980.70600.28230.086*
C60.6056 (3)0.7253 (3)0.3870 (2)0.0819 (10)
H60.57530.79480.37640.098*
C70.5608 (3)0.7390 (4)0.5219 (2)0.1051 (14)
H7A0.59710.70620.57350.126*
H7B0.59170.81200.52370.126*
C80.4244 (3)0.7432 (3)0.51024 (17)0.0653 (8)
C90.7547 (3)0.5128 (3)0.28348 (18)0.0732 (9)
C10A0.8271 (11)0.6028 (9)0.2430 (6)0.1125 (15)0.497 (6)
H10A0.85750.56980.20150.169*0.497 (6)
H10B0.89500.63150.28330.169*0.497 (6)
H10C0.77130.65980.22070.169*0.497 (6)
C11A0.8538 (13)0.4343 (11)0.3166 (9)0.1125 (15)0.497 (6)
H11A0.81870.37140.33440.169*0.497 (6)
H11B0.91240.46600.36110.169*0.497 (6)
H11C0.89440.41470.27590.169*0.497 (6)
C12A0.6605 (9)0.4711 (9)0.2153 (6)0.1125 (15)0.497 (6)
H12A0.62060.52990.18290.169*0.497 (6)
H12B0.60060.43090.23440.169*0.497 (6)
H12C0.69850.42510.18380.169*0.497 (6)
C10B0.7561 (11)0.5733 (9)0.2101 (6)0.1125 (15)0.503 (6)
H10D0.79230.52970.17610.169*0.503 (6)
H10E0.80370.63770.22430.169*0.503 (6)
H10F0.67320.59170.18230.169*0.503 (6)
C11B0.8802 (13)0.4692 (11)0.3269 (8)0.1125 (15)0.503 (6)
H11D0.87170.42320.36980.169*0.503 (6)
H11E0.93420.52790.34820.169*0.503 (6)
H11F0.91420.42890.29000.169*0.503 (6)
C12B0.6679 (9)0.4091 (9)0.2531 (6)0.1125 (15)0.503 (6)
H12D0.58360.43180.23480.169*0.503 (6)
H12E0.67560.35920.29650.169*0.503 (6)
H12F0.69310.37500.20990.169*0.503 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0599 (14)0.172 (3)0.0991 (17)−0.0057 (14)0.0303 (12)−0.0708 (17)
O20.0532 (12)0.1151 (18)0.0758 (14)−0.0020 (11)0.0231 (10)−0.0310 (12)
C10.0408 (15)0.112 (3)0.0682 (19)0.0018 (15)0.0160 (13)−0.0220 (18)
C20.098 (3)0.114 (3)0.068 (2)0.007 (2)0.0381 (19)0.0096 (19)
C30.105 (3)0.078 (2)0.078 (2)0.0180 (19)0.0417 (19)0.0145 (17)
C40.0506 (15)0.0689 (17)0.0574 (15)0.0100 (13)0.0178 (12)0.0069 (13)
C50.0659 (18)0.084 (2)0.0675 (18)0.0235 (16)0.0221 (14)0.0174 (15)
C60.064 (2)0.086 (2)0.094 (2)0.0292 (16)0.0180 (17)−0.0029 (18)
C70.0542 (19)0.171 (4)0.091 (2)0.003 (2)0.0214 (17)−0.053 (3)
C80.0546 (17)0.086 (2)0.0594 (16)0.0042 (14)0.0218 (14)−0.0110 (15)
C90.0687 (19)0.091 (2)0.0630 (17)0.0215 (16)0.0231 (15)0.0022 (16)
C10A0.116 (3)0.136 (4)0.098 (3)0.029 (3)0.050 (3)−0.008 (2)
C11A0.116 (3)0.136 (4)0.098 (3)0.029 (3)0.050 (3)−0.008 (2)
C12A0.116 (3)0.136 (4)0.098 (3)0.029 (3)0.050 (3)−0.008 (2)
C10B0.116 (3)0.136 (4)0.098 (3)0.029 (3)0.050 (3)−0.008 (2)
C11B0.116 (3)0.136 (4)0.098 (3)0.029 (3)0.050 (3)−0.008 (2)
C12B0.116 (3)0.136 (4)0.098 (3)0.029 (3)0.050 (3)−0.008 (2)

Geometric parameters (Å, °)

O1—C81.309 (3)C9—C11B1.517 (15)
O1—H10.9169C9—C12B1.621 (11)
O2—C81.191 (3)C9—C10A1.639 (11)
C1—C21.358 (5)C10A—H10A0.9600
C1—C61.371 (5)C10A—H10B0.9600
C1—C71.508 (4)C10A—H10C0.9600
C2—C31.379 (4)C11A—H11A0.9600
C2—H20.9300C11A—H11B0.9600
C3—C41.369 (4)C11A—H11C0.9600
C3—H30.9300C12A—H12A0.9600
C4—C51.368 (4)C12A—H12B0.9600
C4—C91.517 (4)C12A—H12C0.9600
C5—C61.381 (4)C10B—H10D0.9600
C5—H50.9300C10B—H10E0.9600
C6—H60.9300C10B—H10F0.9600
C7—C81.491 (4)C11B—H11D0.9600
C7—H7A0.9700C11B—H11E0.9600
C7—H7B0.9700C11B—H11F0.9600
C9—C12A1.463 (10)C12B—H12D0.9600
C9—C10B1.476 (10)C12B—H12E0.9600
C9—C11A1.480 (15)C12B—H12F0.9600
C8—O1—H1111.6C10B—C9—C12B105.3 (5)
C2—C1—C6117.3 (3)C4—C9—C12B106.0 (4)
C2—C1—C7121.7 (3)C11B—C9—C12B106.3 (6)
C6—C1—C7121.0 (4)C12A—C9—C10A103.5 (6)
C1—C2—C3120.9 (3)C11A—C9—C10A102.2 (7)
C1—C2—H2119.5C4—C9—C10A107.7 (4)
C3—C2—H2119.5C9—C10A—H10A109.5
C4—C3—C2122.7 (3)C9—C10A—H10B109.5
C4—C3—H3118.7C9—C10A—H10C109.5
C2—C3—H3118.7C9—C11A—H11A109.5
C5—C4—C3115.8 (3)C9—C11A—H11B109.5
C5—C4—C9122.4 (3)C9—C11A—H11C109.5
C3—C4—C9121.7 (3)C9—C12A—H12A109.5
C4—C5—C6121.9 (3)C9—C12A—H12B109.5
C4—C5—H5119.0C9—C12A—H12C109.5
C6—C5—H5119.0C9—C10B—H10D109.5
C1—C6—C5121.3 (3)C9—C10B—H10E109.5
C1—C6—H6119.4H10D—C10B—H10E109.5
C5—C6—H6119.4C9—C10B—H10F109.5
C8—C7—C1115.3 (3)H10D—C10B—H10F109.5
C8—C7—H7A108.5H10E—C10B—H10F109.5
C1—C7—H7A108.5C9—C11B—H11D109.5
C8—C7—H7B108.5C9—C11B—H11E109.5
C1—C7—H7B108.5H11D—C11B—H11E109.5
H7A—C7—H7B107.5C9—C11B—H11F109.5
O2—C8—O1122.7 (3)H11D—C11B—H11F109.5
O2—C8—C7124.9 (3)H11E—C11B—H11F109.5
O1—C8—C7112.4 (3)C9—C12B—H12D109.5
C12A—C9—C11A113.3 (6)C9—C12B—H12E109.5
C12A—C9—C4112.0 (4)H12D—C12B—H12E109.5
C10B—C9—C4116.0 (4)C9—C12B—H12F109.5
C11A—C9—C4116.6 (6)H12D—C12B—H12F109.5
C10B—C9—C11B113.3 (7)H12E—C12B—H12F109.5
C4—C9—C11B109.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.921.742.659 (3)176

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2766).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koningsveld, H. van (1982). Cryst. Struct. Commun.11, 1423–1433.
  • Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2006). Acta Cryst. E62, m2122–m2124.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography