PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1910.
Published online 2008 September 13. doi:  10.1107/S1600536808028250
PMCID: PMC2959342

7,7′-(3,3′-Dibenzyl-3H,3′H-4,4′-bi-1,2,3-triazole-5,5′-di­yl)bis­(4-methyl-2H-chromen-2-one)

Abstract

The title compound, a bis-5,5′-triazole, C38H28N6O4, was observed as a side-product from the Sharpless–Meldal click reaction of the corresponding coumarin alkyne and benzyl­azide. Although the compound was present as a minor component, it crystallized in preference to the major product. The two triazole rings are almost orthogonal to each other [dihedral angle = 83.8 (1)°]. However the 4 and 4′ coumarin systems are close to coplanar with their respective triazole rings [23.6 (1) and 15.1 (1)°]. Each of the benzene rings packs approximately face-to-face with the opposing coumarin ring systems, with inter­planar angles of 7.7 (1) and 25.3 (1)° and distances of 3.567 (2) and 3.929 (2) Å between the respective centroids of the opposing rings.

Related literature

Similar 5,5′-bis­triazole structures have been described previously by Angell & Burgess (2007 [triangle]). For the synthesis of related alkyne-modified coumarins, see: Sivakumar et al. (2004 [triangle]); Zhou & Fahrni (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1910-scheme1.jpg

Experimental

Crystal data

  • C38H28N6O4
  • M r = 632.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1910-efi1.jpg
  • a = 12.4328 (17) Å
  • b = 17.565 (2) Å
  • c = 14.456 (2) Å
  • β = 94.573 (3)°
  • V = 3147.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 193 (2) K
  • 0.36 × 0.19 × 0.06 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.969, T max = 0.995
  • 21410 measured reflections
  • 5703 independent reflections
  • 3222 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.114
  • S = 1.00
  • 5703 reflections
  • 435 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028250/fb2110sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028250/fb2110Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council of Canada, the Alberta Ingen­uity Centre for Carbohydrate Science and the University of Alberta.

supplementary crystallographic information

Comment

In our studies of new synthetic fluorophores through modification of a common fluorophore structure 4-methyl-unbelliferone (II), we generated new alkyne containing profluorophores. We subjected alkyne-modified coumarin structure (III) to conditions typical in a Sharpless–Meldal click reaction with the intention of forming the corresponding 1,2,3-triazole (IV). We explored several conditions for the synthesis of (IV), and obtained reasonable yields with (III) and benzyl azide when reacted with CuI and TEA in a methanol:water mixture. In some of these reactions we observed a minor side-product (23%) evidenced by the appearance of two doublet peaks between 4–5 ppm in the 1H NMR spectrum. These resonances were attributed to the benzylic hydrogen atoms of a bis-5,5'-triazole structure (I), and the presence of this side product was confirmed by the accompanying crystal structure data. This type of side product was first reported by Angell & Burgess (2007). Those authors reported similar observations by 1H NMR and crystallography of the bis-triazole adduct. We have identified improved conditions that avoid formation of the bis-triazole, however it is notable that commonly used conditions for click reactions may produce this type of side product.

Experimental

Synthesis of triazole (IV): The alkyne, (III) (1 equiv), and benzyl azide (4–5 equiv) were dissolved in a 1:1 solution of methanol:water (0.03 M alkyne). CuI (0.2 equiv) was then added, followed by triethylamine (TEA) (2 equiv). The reaction proceeded at room temperature and was monitored by thin layer chromatography. The reaction was complete within 2–3 h. The crude product was concentrated in vacuo, extracted with chloroform and purified by flash column chromatography (CH2Cl2/MeOH), a small amount of the bis-5,5'-triazole (I) was present (23%). The mixture of I and IV was dissolved in 200 µl chloroform, followed by 800 µl of hexanes. Suitable crystals were obtained after two weeks. The crystals were used for determination of the X-ray structure. The original product mixture, 77:23 of IV and I, was used for NMR and MS analysis. 1H NMR (400 MHz, CDCl3):** δ 7.85 (dd, 1H, 3J = 10.8 Hz, 4J = 2.1 Hz), 7.76 (s, 1H), 7.67 (d, 1H, 4J = 2.1 Hz), 7.64 (d, 1H, 3J = 10.8 Hz), 7.43- 7.32 (m, 7H), 7.22 (d, 1H, 4J = 1.6 Hz), 7.05 (m, 2H)I, 6.68 (m, 1H)I, 6.29 (d, 1H, 4J = 1 Hz), 6.26 (d, 0.5H, 4J = 1.6 Hz), 5.61 (s, 2H), 4.88 (d, 0.7H, 3J = 15.2 Hz)I, 4.63 (d, 0.7H, 3J = 15.2 Hz)I, 2.45 (s, 3H), 2.37 (s, 1.5H)I. APT 13C NMR (100 MHz, CDCl3): δ 160.7, 160.3, 153.9, 153.5, 152.0, 151.6, 134.3, 132.6, 132.3, 129.3, 129.0, 128.8, 128.6, 128.2, 128.0, 125.2, 121.5, 121.3, 120.1, 119.6, 115.5, 115.0, 113.8, 113.6, 54.5, 53.0, 18.6, 18.5. HRMS calculated for C38H28N6O4: 632.22; observed: 632.21768 ([2M-2H]+). HRMS calculated for C19H15N3O2: 317.12; observed: 340.11635 ([M+Na]+). Rf = 0.68 (10:1 CH2Cl2/MeOH). **NMR peaks attributed to compound I are denoted by a superscript, and were not observed in purified samples of IV.

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms were generated in idealized positions and then refined using a riding model with fixed C—H distances (Caryl = 0.95 Å, Cmethyl = 0.98 Å, Cmethylene = 0.99 Å) and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Perspective view of (I) showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 20% probability level. Hydrogen atoms are not shown.
Fig. 2.
Compounds used in this study.

Crystal data

C38H28N6O4F(000) = 1320
Mr = 632.66Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2863 reflections
a = 12.4328 (17) Åθ = 2.3–20.4°
b = 17.565 (2) ŵ = 0.09 mm1
c = 14.456 (2) ÅT = 193 K
β = 94.573 (3)°Plate, colourless
V = 3147.0 (7) Å30.36 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker PLATFORM diffractometer/SMART 1000 CCD area-detector5703 independent reflections
Radiation source: fine-focus sealed tube3222 reflections with I > 2σ(I)
graphiteRint = 0.074
Detector resolution: 8.192 pixels mm-1θmax = 25.3°, θmin = 1.6°
ω scansh = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −21→21
Tmin = 0.969, Tmax = 0.995l = −17→17
21410 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.114H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0383P)2 + 0.7089P] where P = (Fo2 + 2Fc2)/3
5703 reflections(Δ/σ)max < 0.001
435 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.16 e Å3
110 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.04554 (13)0.38038 (9)0.61080 (10)0.0487 (4)
O2−0.11506 (15)0.35827 (9)0.74362 (12)0.0611 (5)
O30.40923 (16)0.24278 (11)0.23341 (13)0.0765 (6)
O40.5627 (2)0.20011 (15)0.29991 (18)0.1143 (9)
N10.22902 (15)0.49591 (11)0.24171 (13)0.0435 (5)
N20.27468 (17)0.50775 (12)0.32747 (14)0.0529 (6)
N30.21771 (16)0.47016 (11)0.38566 (13)0.0493 (5)
N4−0.01392 (15)0.46189 (10)0.12514 (12)0.0399 (5)
N5−0.05450 (16)0.42958 (11)0.04549 (13)0.0460 (5)
N60.00981 (16)0.37304 (11)0.02675 (13)0.0441 (5)
C1−0.1166 (2)0.34162 (14)0.66209 (18)0.0479 (6)
C2−0.18458 (19)0.28631 (13)0.61442 (17)0.0471 (6)
H2−0.23750.26160.64760.056*
C3−0.17758 (19)0.26742 (13)0.52525 (17)0.0431 (6)
C4−0.09753 (18)0.30559 (12)0.47449 (15)0.0389 (6)
C5−0.0778 (2)0.28938 (13)0.38278 (16)0.0466 (6)
H5−0.11720.24980.35070.056*
C6−0.00257 (19)0.32950 (13)0.33810 (16)0.0455 (6)
H60.00970.31710.27590.055*
C70.05606 (18)0.38843 (12)0.38319 (15)0.0381 (6)
C80.03910 (18)0.40452 (12)0.47489 (15)0.0407 (6)
H80.07850.44400.50710.049*
C9−0.03566 (18)0.36255 (13)0.51869 (15)0.0392 (6)
C10−0.2493 (2)0.20886 (15)0.47772 (18)0.0610 (8)
H10A−0.29720.18770.52190.073*
H10B−0.20520.16800.45430.073*
H10C−0.29270.23240.42580.073*
C110.13516 (18)0.43373 (12)0.33611 (15)0.0392 (6)
C120.14149 (18)0.44964 (12)0.24347 (15)0.0368 (5)
C130.27160 (19)0.53422 (14)0.16239 (16)0.0487 (7)
H13A0.31560.57840.18520.058*
H13B0.21050.55390.12110.058*
C140.33957 (19)0.48340 (14)0.10704 (18)0.0476 (6)
C150.3150 (2)0.47500 (15)0.01346 (18)0.0556 (7)
H150.25460.5013−0.01550.067*
C160.3761 (2)0.42923 (18)−0.0396 (2)0.0715 (9)
H160.35770.4244−0.10440.086*
C170.4629 (3)0.39096 (18)0.0011 (3)0.0779 (10)
H170.50430.3586−0.03490.094*
C180.4899 (2)0.3996 (2)0.0946 (3)0.0861 (10)
H180.55120.37380.12280.103*
C190.4289 (2)0.44567 (18)0.1482 (2)0.0715 (9)
H190.44820.45130.21280.086*
C210.5019 (3)0.19979 (19)0.2306 (3)0.0810 (10)
C220.5171 (2)0.16063 (18)0.1459 (3)0.0800 (10)
H220.57960.12990.14310.096*
C230.4479 (2)0.16503 (17)0.0704 (2)0.0717 (9)
C240.3521 (2)0.21249 (15)0.07429 (19)0.0562 (7)
C250.2752 (2)0.22437 (16)0.0006 (2)0.0631 (8)
H250.28170.1980−0.05610.076*
C260.1900 (2)0.27323 (14)0.00755 (18)0.0528 (7)
H260.13890.2806−0.04410.063*
C270.17829 (19)0.31216 (13)0.09072 (16)0.0431 (6)
C280.2519 (2)0.29845 (14)0.16581 (17)0.0512 (7)
H280.24340.32240.22370.061*
C290.3372 (2)0.25008 (15)0.15623 (19)0.0537 (7)
C300.4669 (3)0.1241 (2)−0.0173 (2)0.1060 (13)
H30A0.53110.0919−0.00720.127*
H30B0.47790.1613−0.06630.127*
H30C0.40420.0924−0.03610.127*
C310.09201 (18)0.36899 (13)0.09483 (15)0.0382 (6)
C320.07816 (17)0.42608 (12)0.15855 (15)0.0364 (5)
C33−0.07212 (19)0.52408 (13)0.16521 (17)0.0481 (6)
H33A−0.10750.55530.11450.058*
H33B−0.02000.55700.20180.058*
C34−0.1562 (2)0.49688 (16)0.22682 (16)0.0492 (7)
C35−0.1863 (3)0.5442 (2)0.2960 (2)0.0877 (11)
H35−0.15470.59330.30360.105*
C36−0.2617 (3)0.5209 (3)0.3541 (3)0.1298 (18)
H36−0.28140.55360.40220.156*
C37−0.3088 (3)0.4506 (3)0.3432 (3)0.1210 (17)
H37−0.36120.43490.38370.145*
C38−0.2809 (3)0.4032 (2)0.2748 (2)0.0917 (11)
H38−0.31370.35460.26670.110*
C39−0.2042 (2)0.42693 (18)0.2171 (2)0.0676 (8)
H39−0.18420.39380.16940.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0625 (12)0.0467 (10)0.0383 (10)−0.0123 (9)0.0128 (9)−0.0055 (8)
O20.0865 (14)0.0564 (11)0.0424 (11)−0.0080 (10)0.0177 (10)−0.0004 (9)
O30.0629 (13)0.0901 (15)0.0732 (14)0.0306 (11)−0.0150 (11)−0.0122 (11)
O40.0845 (18)0.139 (2)0.112 (2)0.0492 (16)−0.0406 (16)−0.0220 (16)
N10.0425 (12)0.0502 (12)0.0374 (12)−0.0082 (10)0.0017 (10)0.0042 (10)
N20.0550 (14)0.0602 (14)0.0424 (13)−0.0147 (11)−0.0027 (11)0.0027 (11)
N30.0523 (13)0.0551 (13)0.0399 (12)−0.0127 (11)0.0001 (11)0.0015 (10)
N40.0404 (12)0.0449 (12)0.0346 (11)0.0009 (10)0.0040 (9)−0.0021 (9)
N50.0431 (12)0.0550 (13)0.0394 (12)0.0023 (11)0.0005 (10)−0.0043 (10)
N60.0412 (12)0.0510 (13)0.0402 (12)0.0007 (10)0.0041 (10)−0.0037 (10)
C10.0574 (17)0.0426 (15)0.0453 (16)0.0012 (13)0.0138 (14)0.0065 (13)
C20.0447 (15)0.0447 (15)0.0531 (17)−0.0056 (12)0.0114 (13)0.0038 (13)
C30.0409 (15)0.0391 (14)0.0489 (16)−0.0003 (11)0.0011 (13)0.0037 (12)
C40.0406 (14)0.0353 (13)0.0404 (15)−0.0026 (11)0.0015 (12)0.0006 (11)
C50.0547 (17)0.0436 (14)0.0410 (15)−0.0109 (13)−0.0008 (13)−0.0043 (12)
C60.0561 (16)0.0476 (15)0.0330 (14)−0.0081 (13)0.0046 (12)−0.0033 (12)
C70.0397 (14)0.0379 (14)0.0363 (14)0.0004 (11)0.0012 (11)0.0023 (11)
C80.0479 (15)0.0370 (13)0.0372 (14)−0.0084 (11)0.0026 (12)−0.0043 (11)
C90.0446 (15)0.0386 (14)0.0345 (14)0.0011 (12)0.0041 (12)−0.0010 (11)
C100.0523 (17)0.0643 (18)0.0657 (19)−0.0200 (14)0.0005 (14)0.0008 (15)
C110.0421 (14)0.0406 (14)0.0344 (14)−0.0030 (11)0.0007 (12)−0.0031 (11)
C120.0360 (14)0.0363 (13)0.0381 (14)−0.0015 (11)0.0036 (11)0.0005 (11)
C130.0465 (15)0.0547 (16)0.0452 (15)−0.0101 (13)0.0066 (12)0.0112 (12)
C140.0345 (14)0.0573 (17)0.0516 (17)−0.0077 (12)0.0069 (13)0.0111 (13)
C150.0486 (17)0.0635 (18)0.0550 (18)−0.0015 (14)0.0052 (14)0.0027 (14)
C160.065 (2)0.085 (2)0.066 (2)−0.0007 (18)0.0158 (17)−0.0099 (17)
C170.063 (2)0.078 (2)0.098 (3)0.0030 (18)0.038 (2)0.003 (2)
C180.050 (2)0.105 (3)0.105 (3)0.0202 (18)0.020 (2)0.028 (2)
C190.0469 (18)0.102 (2)0.066 (2)0.0033 (17)0.0075 (16)0.0221 (18)
C210.056 (2)0.090 (2)0.094 (3)0.0247 (18)−0.015 (2)−0.013 (2)
C220.0467 (19)0.085 (2)0.107 (3)0.0192 (17)0.002 (2)−0.019 (2)
C230.0444 (18)0.078 (2)0.093 (2)0.0118 (16)0.0065 (18)−0.0228 (18)
C240.0391 (16)0.0618 (18)0.0676 (19)0.0048 (13)0.0034 (15)−0.0201 (15)
C250.0468 (17)0.078 (2)0.0645 (19)0.0038 (15)0.0040 (15)−0.0303 (16)
C260.0409 (16)0.0644 (18)0.0525 (16)0.0019 (13)0.0008 (13)−0.0155 (14)
C270.0366 (14)0.0470 (15)0.0465 (16)−0.0010 (12)0.0077 (12)−0.0043 (12)
C280.0515 (17)0.0579 (17)0.0440 (16)0.0123 (14)0.0022 (13)−0.0056 (13)
C290.0421 (16)0.0593 (17)0.0580 (17)0.0070 (14)−0.0062 (14)−0.0075 (14)
C300.067 (2)0.133 (3)0.119 (3)0.039 (2)0.010 (2)−0.050 (3)
C310.0336 (13)0.0461 (14)0.0349 (13)−0.0026 (11)0.0030 (12)0.0006 (11)
C320.0331 (13)0.0413 (14)0.0348 (13)−0.0030 (11)0.0035 (11)0.0029 (11)
C330.0495 (16)0.0463 (15)0.0480 (15)0.0070 (12)−0.0002 (13)−0.0058 (12)
C340.0443 (15)0.0636 (18)0.0394 (15)0.0143 (14)0.0004 (12)0.0009 (13)
C350.064 (2)0.127 (3)0.074 (2)0.009 (2)0.0146 (18)−0.041 (2)
C360.081 (3)0.230 (6)0.082 (3)0.004 (3)0.032 (2)−0.061 (3)
C370.073 (3)0.220 (6)0.075 (3)−0.006 (3)0.037 (2)0.009 (3)
C380.071 (2)0.123 (3)0.085 (3)0.004 (2)0.029 (2)0.025 (2)
C390.065 (2)0.074 (2)0.067 (2)0.0103 (17)0.0268 (16)0.0103 (16)

Geometric parameters (Å, °)

O1—C11.378 (3)C15—H150.9500
O1—C91.383 (2)C16—C171.364 (4)
O2—C11.213 (3)C16—H160.9500
O3—C291.380 (3)C17—C181.374 (4)
O3—C211.381 (3)C17—H170.9500
O4—C211.206 (3)C18—C191.388 (4)
N1—N21.338 (2)C18—H180.9500
N1—C121.360 (3)C19—H190.9500
N1—C131.465 (3)C21—C221.431 (4)
N2—N31.319 (2)C22—C231.337 (4)
N3—C111.363 (3)C22—H220.9500
N4—N51.345 (2)C23—C241.459 (4)
N4—C321.361 (3)C23—C301.493 (4)
N4—C331.456 (3)C24—C291.381 (3)
N5—N61.317 (2)C24—C251.390 (3)
N6—C311.363 (3)C25—C261.374 (3)
C1—C21.428 (3)C25—H250.9500
C2—C31.341 (3)C26—C271.401 (3)
C2—H20.9500C26—H260.9500
C3—C41.447 (3)C27—C281.384 (3)
C3—C101.493 (3)C27—C311.470 (3)
C4—C91.387 (3)C28—C291.375 (3)
C4—C51.397 (3)C28—H280.9500
C5—C61.373 (3)C30—H30A0.9800
C5—H50.9500C30—H30B0.9800
C6—C71.397 (3)C30—H30C0.9800
C6—H60.9500C31—C321.382 (3)
C7—C81.388 (3)C33—C341.504 (3)
C7—C111.473 (3)C33—H33A0.9900
C8—C91.379 (3)C33—H33B0.9900
C8—H80.9500C34—C391.368 (4)
C10—H10A0.9800C34—C351.376 (4)
C10—H10B0.9800C35—C361.370 (5)
C10—H10C0.9800C35—H350.9500
C11—C121.376 (3)C36—C371.371 (6)
C12—C321.464 (3)C36—H360.9500
C13—C141.503 (3)C37—C381.359 (5)
C13—H13A0.9900C37—H370.9500
C13—H13B0.9900C38—C391.381 (4)
C14—C151.371 (3)C38—H380.9500
C14—C191.387 (4)C39—H390.9500
C15—C161.380 (4)
C1—O1—C9121.08 (19)C17—C18—C19120.8 (3)
C29—O3—C21121.1 (2)C17—C18—H18119.6
N2—N1—C12110.89 (18)C19—C18—H18119.6
N2—N1—C13120.06 (19)C14—C19—C18119.6 (3)
C12—N1—C13129.0 (2)C14—C19—H19120.2
N3—N2—N1107.66 (18)C18—C19—H19120.2
N2—N3—C11108.65 (18)O4—C21—O3116.3 (3)
N5—N4—C32110.87 (18)O4—C21—C22126.7 (3)
N5—N4—C33119.52 (19)O3—C21—C22117.1 (3)
C32—N4—C33129.53 (19)C23—C22—C21123.4 (3)
N6—N5—N4107.57 (18)C23—C22—H22118.3
N5—N6—C31108.87 (18)C21—C22—H22118.3
O2—C1—O1116.3 (2)C22—C23—C24118.4 (3)
O2—C1—C2126.6 (2)C22—C23—C30122.1 (3)
O1—C1—C2117.2 (2)C24—C23—C30119.5 (3)
C3—C2—C1123.4 (2)C29—C24—C25117.1 (2)
C3—C2—H2118.3C29—C24—C23118.2 (3)
C1—C2—H2118.3C25—C24—C23124.8 (3)
C2—C3—C4118.2 (2)C26—C25—C24121.7 (2)
C2—C3—C10122.1 (2)C26—C25—H25119.2
C4—C3—C10119.7 (2)C24—C25—H25119.2
C9—C4—C5116.8 (2)C25—C26—C27120.1 (2)
C9—C4—C3118.6 (2)C25—C26—H26119.9
C5—C4—C3124.5 (2)C27—C26—H26120.0
C6—C5—C4121.3 (2)C28—C27—C26118.8 (2)
C6—C5—H5119.3C28—C27—C31121.7 (2)
C4—C5—H5119.3C26—C27—C31119.5 (2)
C5—C6—C7120.7 (2)C29—C28—C27119.7 (2)
C5—C6—H6119.7C29—C28—H28120.1
C7—C6—H6119.7C27—C28—H28120.1
C8—C7—C6118.9 (2)C28—C29—O3115.6 (2)
C8—C7—C11119.3 (2)C28—C29—C24122.6 (2)
C6—C7—C11121.8 (2)O3—C29—C24121.8 (2)
C9—C8—C7119.3 (2)C23—C30—H30A109.5
C9—C8—H8120.4C23—C30—H30B109.5
C7—C8—H8120.4H30A—C30—H30B109.5
C8—C9—O1115.8 (2)C23—C30—H30C109.5
C8—C9—C4122.9 (2)H30A—C30—H30C109.5
O1—C9—C4121.2 (2)H30B—C30—H30C109.5
C3—C10—H10A109.5N6—C31—C32108.5 (2)
C3—C10—H10B109.5N6—C31—C27120.9 (2)
H10A—C10—H10B109.5C32—C31—C27130.5 (2)
C3—C10—H10C109.5N4—C32—C31104.18 (19)
H10A—C10—H10C109.5N4—C32—C12123.2 (2)
H10B—C10—H10C109.5C31—C32—C12132.6 (2)
N3—C11—C12108.5 (2)N4—C33—C34112.85 (19)
N3—C11—C7120.9 (2)N4—C33—H33A109.0
C12—C11—C7130.6 (2)C34—C33—H33A109.0
N1—C12—C11104.33 (19)N4—C33—H33B109.0
N1—C12—C32122.06 (19)C34—C33—H33B109.0
C11—C12—C32133.6 (2)H33A—C33—H33B107.8
N1—C13—C14113.43 (19)C39—C34—C35118.4 (3)
N1—C13—H13A108.9C39—C34—C33122.8 (2)
C14—C13—H13A108.9C35—C34—C33118.7 (3)
N1—C13—H13B108.9C36—C35—C34120.2 (4)
C14—C13—H13B108.9C36—C35—H35119.9
H13A—C13—H13B107.7C34—C35—H35119.9
C15—C14—C19118.7 (3)C35—C36—C37120.5 (4)
C15—C14—C13119.9 (2)C35—C36—H36119.8
C19—C14—C13121.4 (2)C37—C36—H36119.8
C14—C15—C16121.5 (3)C38—C37—C36120.2 (4)
C14—C15—H15119.3C38—C37—H37119.9
C16—C15—H15119.3C36—C37—H37119.9
C17—C16—C15119.9 (3)C37—C38—C39119.0 (4)
C17—C16—H16120.0C37—C38—H38120.5
C15—C16—H16120.0C39—C38—H38120.5
C16—C17—C18119.5 (3)C34—C39—C38121.7 (3)
C16—C17—H17120.3C34—C39—H39119.2
C18—C17—H17120.3C38—C39—H39119.2
C12—N1—N2—N3−0.4 (3)C17—C18—C19—C140.0 (5)
C13—N1—N2—N3176.64 (19)C29—O3—C21—O4176.2 (3)
N1—N2—N3—C110.3 (3)C29—O3—C21—C22−2.8 (4)
C32—N4—N5—N60.2 (2)O4—C21—C22—C23−177.5 (4)
C33—N4—N5—N6−176.94 (18)O3—C21—C22—C231.4 (5)
N4—N5—N6—C310.1 (2)C21—C22—C23—C240.3 (5)
C9—O1—C1—O2175.8 (2)C21—C22—C23—C30179.2 (3)
C9—O1—C1—C2−4.3 (3)C22—C23—C24—C29−0.5 (4)
O2—C1—C2—C3−175.8 (3)C30—C23—C24—C29−179.5 (3)
O1—C1—C2—C34.3 (4)C22—C23—C24—C25177.9 (3)
C1—C2—C3—C4−0.5 (4)C30—C23—C24—C25−1.1 (5)
C1—C2—C3—C10179.5 (2)C29—C24—C25—C262.1 (4)
C2—C3—C4—C9−3.3 (3)C23—C24—C25—C26−176.3 (3)
C10—C3—C4—C9176.7 (2)C24—C25—C26—C27−0.5 (4)
C2—C3—C4—C5177.0 (2)C25—C26—C27—C28−2.1 (4)
C10—C3—C4—C5−3.0 (4)C25—C26—C27—C31174.9 (2)
C9—C4—C5—C6−1.6 (3)C26—C27—C28—C293.1 (4)
C3—C4—C5—C6178.1 (2)C31—C27—C28—C29−173.9 (2)
C4—C5—C6—C7−0.5 (4)C27—C28—C29—O3177.0 (2)
C5—C6—C7—C81.7 (3)C27—C28—C29—C24−1.5 (4)
C5—C6—C7—C11−178.3 (2)C21—O3—C29—C28−175.8 (3)
C6—C7—C8—C9−0.6 (3)C21—O3—C29—C242.7 (4)
C11—C7—C8—C9179.4 (2)C25—C24—C29—C28−1.1 (4)
C7—C8—C9—O1178.1 (2)C23—C24—C29—C28177.4 (3)
C7—C8—C9—C4−1.7 (3)C25—C24—C29—O3−179.4 (2)
C1—O1—C9—C8−179.2 (2)C23—C24—C29—O3−1.0 (4)
C1—O1—C9—C40.6 (3)N5—N6—C31—C32−0.3 (2)
C5—C4—C9—C82.8 (3)N5—N6—C31—C27−178.29 (19)
C3—C4—C9—C8−177.0 (2)C28—C27—C31—N6−168.9 (2)
C5—C4—C9—O1−176.9 (2)C26—C27—C31—N614.2 (3)
C3—C4—C9—O13.3 (3)C28—C27—C31—C3213.6 (4)
N2—N3—C11—C12−0.1 (3)C26—C27—C31—C32−163.3 (2)
N2—N3—C11—C7−178.5 (2)N5—N4—C32—C31−0.4 (2)
C8—C7—C11—N324.2 (3)C33—N4—C32—C31176.4 (2)
C6—C7—C11—N3−155.8 (2)N5—N4—C32—C12178.81 (19)
C8—C7—C11—C12−153.9 (2)C33—N4—C32—C12−4.4 (3)
C6—C7—C11—C1226.2 (4)N6—C31—C32—N40.4 (2)
N2—N1—C12—C110.3 (2)C27—C31—C32—N4178.1 (2)
C13—N1—C12—C11−176.4 (2)N6—C31—C32—C12−178.6 (2)
N2—N1—C12—C32−178.5 (2)C27—C31—C32—C12−0.9 (4)
C13—N1—C12—C324.8 (3)N1—C12—C32—N4−96.3 (3)
N3—C11—C12—N1−0.2 (2)C11—C12—C32—N485.2 (3)
C7—C11—C12—N1178.1 (2)N1—C12—C32—C3182.6 (3)
N3—C11—C12—C32178.5 (2)C11—C12—C32—C31−95.9 (3)
C7—C11—C12—C32−3.3 (4)N5—N4—C33—C3486.5 (2)
N2—N1—C13—C14102.5 (2)C32—N4—C33—C34−90.0 (3)
C12—N1—C13—C14−81.1 (3)N4—C33—C34—C39−25.5 (3)
N1—C13—C14—C15125.2 (2)N4—C33—C34—C35154.5 (2)
N1—C13—C14—C19−56.2 (3)C39—C34—C35—C360.8 (5)
C19—C14—C15—C161.0 (4)C33—C34—C35—C36−179.2 (3)
C13—C14—C15—C16179.5 (2)C34—C35—C36—C37−0.8 (6)
C14—C15—C16—C170.2 (4)C35—C36—C37—C380.2 (7)
C15—C16—C17—C18−1.3 (5)C36—C37—C38—C390.4 (6)
C16—C17—C18—C191.2 (5)C35—C34—C39—C38−0.2 (4)
C15—C14—C19—C18−1.1 (4)C33—C34—C39—C38179.8 (3)
C13—C14—C19—C18−179.6 (2)C37—C38—C39—C34−0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.453.292 (3)148.
C33—H33B···O2ii0.992.333.307 (3)168.
C10—H10C···O4iii0.982.523.337 (4)141.

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2110).

References

  • Angell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed.46, 3649–3651. [PubMed]
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sivakumar, K., Xie, F., Cash, B. M., Long, S., Barnhill, H. N. & Wang, Q. (2004). Org. Lett. 6, 4603–4606. [PubMed]
  • Zhou, Z. & Fahrni, C. J. (2004). J. Am. Chem. Soc.126, 8862–8863. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography