PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1269–m1270.
Published online 2008 September 17. doi:  10.1107/S1600536808028869
PMCID: PMC2959341

Cyclo­hexyldimethyl­ammonium tetra­hydroxy­penta­borate

Abstract

The title compound, [C8H18N]+·[B5O6(OH)4], has been synthesized under mild solvothermal conditions in the presence of N,N-dimethyl­cyclo­hexyl­amine acting as a template. The structure consists of penta­borate [B5O6(OH)4] anions connected through O—H(...)O hydrogen bonds into a three-dimensional framework, with large channels along [100], [010] and [001] directions. The [C8H18N]+ cations reside in the channels, inter­acting with the framework through N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Batsanov et al. (1982 [triangle]); Burns et al. (1995 [triangle]); Chen et al. (1995 [triangle]); Grice et al. (1999 [triangle]); Liu & Li (2006 [triangle]); Liu et al. (2006 [triangle]); Schubert et al. (2000 [triangle]); Touboul et al. (2003 [triangle]); Wang et al. (2004 [triangle], 2008a [triangle],b [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-m1269-scheme1.jpg

Experimental

Crystal data

  • C8H18N+·B5H4O10
  • M r = 346.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1269-efi1.jpg
  • a = 8.6971 (4) Å
  • b = 9.8990 (2) Å
  • c = 10.2300 (3) Å
  • α = 74.591 (3)°
  • β = 74.442 (2)°
  • γ = 82.190 (5)°
  • V = 815.98 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 295 (2) K
  • 0.45 × 0.45 × 0.45 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.948, T max = 0.949
  • 6623 measured reflections
  • 3318 independent reflections
  • 2536 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.119
  • S = 1.08
  • 3318 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT-Plus (Bruker, 2002 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028869/mg2056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028869/mg2056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Qingdao University Research Fund (No. 063–06300522).

supplementary crystallographic information

Comment

Borate materials have been receiving particular attention due to their fascinating structural diversities and potential applications in mineralogy and industry (Burns et al., 1995; Chen et al., 1995; Grice et al., 1999; Touboul et al., 2003). From a structural point of view, the ability of B to adopt both BO3 and BO4 coordination modes, coupled with the tendency of such units to polymerize into a wide range of polyanions, has led to a rapidly growing family of borates. Thus far, numerous inorganic borate materials with alkali metals, alkaline earth metals, rare earths and transition metals have been extensively studied. In contrast, the analogous chemistry of organically templated borates is still relatively undeveloped. To the best of our knowledge, only a few examples with polyanions, such as [B4O5(OH)4] (Batsanov et al., 1982), [B5O6(OH)4] (Wang et al., 2004), [B7O9(OH)5] (Liu & Li, 2006; Liu et al., 2006), [B9O12(OH)6] (Schubert et al., 2000) and [B14O20(OH)6] (Liu et al., 2006), have been reported. The aim of our work is to explore the construction of novel microporous aluminoborates templated by organic agents with different shape and size (Wang et al., 2008a,b). Unexpectedly, the title compound, (I), was isolated, a new organically templated pentaborate.

As shown in Fig. 1, the asymmetric unit of (I) contains one [B5O6(OH)4]- anion and one [C8H18N]+ cation. The anionic [B5O6(OH)4]- polyanion is composed of two common B3O3 rings, each containing two BO3 triangles and one BO4 tetrahedron. The B—O bond distances lie in the range 1.341 (2)–1.388 (2) Å for the BO3 triangles (B1, B2, B4 and B5) and 1.452 (2)–1.473 (2) Å for the B(3)O4 tetrahedron, in good agreement with those reported previously for other borate compounds. The O—B—O bond angles lie in the range 115.8 (2)–123.7 (2) ° for the triangles and 108.4 (2)–111.2 (2) ° for the tetrahedron. The anionic [B5O6(OH)4]- groups are connected to each other through intermolecular O—H···O hydrogen bonds, forming a three-dimensional framework with large channels along [100], [010] and [001] directions. The [C8H18N]+ cations reside in these channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).

Experimental

A mixture of H3BO3 (0.186 g), Al2O3 (0.104 g), N,N-dimethylcyclohexylamine (0.75 ml), pyridine (4.4 ml) and H2O (0.50 ml) was sealed in a Teflon-lined steel autoclave, heated at 453 K for 8 days, and then cooled to room temperature. The homogeneous product consisting of large colorless block-shaped crystals was separated from the solution by filtration, washed with distilled water, and then dried in air.

Refinement

All H atoms were positioned geometrically and treated as riding atoms: O—H = 0.82 Å, N—H = 0.91 Å and C—H = 0.96–0.98 Å with Uiso(H) = 1.2–1.5Ueq(parent atoms).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
Fig. 2.
Projection of (I) along b, showing [B5O6(OH)4]- anions linked into a three-dimensional framework, with [C8H18N]+ cations occupying channels. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H18N+·B5H4O10Z = 2
Mr = 346.32F(000) = 364
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6971 (4) ÅCell parameters from 6623 reflections
b = 9.8990 (2) Åθ = 2.1–26.5°
c = 10.2300 (3) ŵ = 0.12 mm1
α = 74.591 (3)°T = 295 K
β = 74.442 (2)°Block, colorless
γ = 82.190 (5)°0.45 × 0.45 × 0.45 mm
V = 815.98 (5) Å3

Data collection

Bruker SMART APEX area-detector diffractometer3318 independent reflections
Radiation source: fine-focus sealed tube2536 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.949, Tmax = 0.949k = −12→12
6623 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0587P)2 + 0.0744P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3318 reflectionsΔρmax = 0.23 e Å3
218 parametersΔρmin = −0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.3071 (2)1.10774 (18)0.59941 (19)0.0342 (4)
B20.1056 (2)1.1184 (2)0.8073 (2)0.0372 (4)
B30.3133 (2)0.92080 (17)0.81503 (17)0.0296 (4)
B40.3702 (2)0.66200 (18)0.88838 (18)0.0309 (4)
B50.5114 (2)0.81317 (18)0.95617 (18)0.0311 (4)
O10.35979 (15)1.16205 (12)0.46086 (12)0.0477 (3)
H1A0.43761.11330.42910.072*
O20.17524 (14)1.17636 (12)0.66942 (12)0.0480 (3)
O3−0.02096 (16)1.18988 (13)0.87215 (13)0.0555 (4)
H3A−0.06411.13910.94700.083*
O40.16229 (13)0.99089 (11)0.87271 (11)0.0362 (3)
O50.37677 (12)0.98883 (11)0.66764 (10)0.0328 (3)
O60.42790 (13)0.92583 (10)0.89591 (11)0.0334 (3)
O70.28642 (13)0.77398 (10)0.82604 (11)0.0331 (3)
O80.61961 (15)0.82028 (12)1.02584 (13)0.0454 (3)
H8A0.60450.89531.04860.068*
O90.48965 (13)0.67959 (11)0.94784 (12)0.0375 (3)
O100.33377 (15)0.53291 (11)0.89197 (13)0.0453 (3)
H10A0.38590.47360.93860.068*
C20.2698 (4)0.5351 (3)0.4335 (3)0.0907 (9)
H2A0.33270.44610.43600.109*
H2B0.18540.53490.38800.109*
C10.3752 (4)0.6525 (3)0.3495 (3)0.0884 (8)
H1B0.46590.64750.38920.106*
H1C0.41560.64250.25420.106*
C40.1958 (3)0.5485 (2)0.5814 (2)0.0685 (6)
H4A0.12480.47380.63010.082*
H4B0.27930.53920.63040.082*
C30.2836 (3)0.7915 (3)0.3491 (2)0.0677 (6)
H3B0.20100.80080.29900.081*
H3C0.35520.86590.30050.081*
C50.2074 (3)0.8069 (2)0.4963 (2)0.0552 (5)
H5A0.29080.80970.54210.066*
H5B0.14280.89520.49220.066*
C60.1036 (2)0.6880 (2)0.58154 (18)0.0464 (4)
H6A0.01410.69200.53910.056*
C7−0.0497 (3)0.5880 (3)0.8280 (3)0.0899 (9)
H7A−0.08810.60780.91850.135*
H7B0.02190.50500.83410.135*
H7D−0.13860.57320.79560.135*
C8−0.0711 (3)0.8397 (3)0.7322 (3)0.0774 (7)
H8B−0.10920.84850.82700.116*
H8E−0.16030.83540.69530.116*
H8C−0.01240.91940.67670.116*
N10.03619 (19)0.70824 (19)0.72858 (16)0.0540 (4)
H1D0.12080.71740.76140.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.0377 (10)0.0291 (9)0.0329 (9)0.0001 (8)−0.0099 (8)−0.0021 (7)
B20.0364 (10)0.0328 (10)0.0367 (10)0.0043 (8)−0.0081 (8)−0.0027 (8)
B30.0345 (9)0.0252 (8)0.0286 (9)0.0013 (7)−0.0110 (7)−0.0038 (7)
B40.0346 (9)0.0268 (9)0.0308 (9)−0.0004 (7)−0.0100 (7)−0.0050 (7)
B50.0318 (9)0.0298 (9)0.0316 (9)0.0026 (7)−0.0096 (7)−0.0075 (7)
O10.0515 (8)0.0430 (7)0.0336 (6)0.0102 (6)−0.0047 (5)0.0038 (5)
O20.0495 (8)0.0379 (7)0.0381 (7)0.0151 (5)−0.0026 (5)0.0048 (5)
O30.0515 (8)0.0468 (8)0.0467 (7)0.0198 (6)0.0006 (6)0.0008 (6)
O40.0361 (6)0.0325 (6)0.0319 (6)0.0059 (5)−0.0056 (5)−0.0010 (5)
O50.0364 (6)0.0296 (6)0.0284 (6)0.0036 (4)−0.0073 (4)−0.0037 (4)
O60.0422 (6)0.0247 (5)0.0361 (6)0.0024 (5)−0.0179 (5)−0.0062 (4)
O70.0372 (6)0.0274 (6)0.0370 (6)−0.0002 (5)−0.0177 (5)−0.0037 (4)
O80.0540 (8)0.0337 (6)0.0605 (8)0.0078 (5)−0.0354 (6)−0.0155 (5)
O90.0439 (7)0.0248 (6)0.0496 (7)0.0050 (5)−0.0261 (5)−0.0076 (5)
O100.0546 (8)0.0262 (6)0.0614 (8)−0.0016 (5)−0.0320 (6)−0.0036 (5)
C20.130 (2)0.0621 (16)0.0858 (19)0.0030 (16)−0.0256 (18)−0.0321 (14)
C10.0910 (19)0.101 (2)0.0638 (15)0.0082 (16)−0.0015 (14)−0.0295 (15)
C40.0907 (17)0.0440 (12)0.0684 (15)−0.0043 (11)−0.0254 (13)−0.0035 (10)
C30.0751 (15)0.0731 (15)0.0487 (12)−0.0154 (12)−0.0111 (11)−0.0032 (11)
C50.0682 (13)0.0471 (11)0.0508 (11)−0.0127 (10)−0.0154 (10)−0.0073 (9)
C60.0485 (11)0.0532 (11)0.0407 (10)−0.0104 (9)−0.0183 (8)−0.0055 (8)
C70.0835 (18)0.125 (2)0.0532 (14)−0.0480 (17)−0.0113 (13)0.0068 (14)
C80.0516 (13)0.110 (2)0.0765 (16)0.0118 (13)−0.0205 (12)−0.0362 (15)
N10.0436 (9)0.0767 (12)0.0442 (9)−0.0127 (8)−0.0178 (7)−0.0071 (8)

Geometric parameters (Å, °)

B1—O11.350 (2)C1—C31.492 (4)
B1—O51.3552 (19)C1—H1B0.9700
B1—O21.377 (2)C1—H1C0.9700
B2—O31.341 (2)C4—C61.500 (3)
B2—O41.357 (2)C4—H4A0.9700
B2—O21.375 (2)C4—H4B0.9700
B3—O41.452 (2)C3—C51.513 (3)
B3—O51.4651 (19)C3—H3B0.9700
B3—O61.469 (2)C3—H3C0.9700
B3—O71.473 (2)C5—C61.510 (3)
B4—O101.346 (2)C5—H5A0.9700
B4—O71.3491 (19)C5—H5B0.9700
B4—O91.387 (2)C6—N11.517 (2)
B5—O81.343 (2)C6—H6A0.9800
B5—O61.3439 (19)C7—N11.484 (3)
B5—O91.388 (2)C7—H7A0.9600
O1—H1A0.8200C7—H7B0.9600
O3—H3A0.8200C7—H7D0.9600
O8—H8A0.8200C8—N11.497 (3)
O10—H10A0.8200C8—H8B0.9600
C2—C11.506 (4)C8—H8E0.9600
C2—C41.510 (3)C8—H8C0.9600
C2—H2A0.9700N1—H1D0.9100
C2—H2B0.9700
O1—B1—O5122.22 (15)C6—C4—H4A109.5
O1—B1—O2117.10 (14)C2—C4—H4A109.5
O5—B1—O2120.66 (14)C6—C4—H4B109.5
O3—B2—O4121.91 (16)C2—C4—H4B109.5
O3—B2—O2117.92 (15)H4A—C4—H4B108.1
O4—B2—O2120.14 (15)C1—C3—C5111.33 (19)
O4—B3—O5111.21 (12)C1—C3—H3B109.4
O4—B3—O6108.43 (12)C5—C3—H3B109.4
O5—B3—O6109.57 (13)C1—C3—H3C109.4
O4—B3—O7108.58 (13)C5—C3—H3C109.4
O5—B3—O7108.76 (12)H3B—C3—H3C108.0
O6—B3—O7110.28 (12)C6—C5—C3112.21 (17)
O10—B4—O7118.13 (15)C6—C5—H5A109.2
O10—B4—O9121.04 (14)C3—C5—H5A109.2
O7—B4—O9120.83 (14)C6—C5—H5B109.2
O8—B5—O6123.78 (14)C3—C5—H5B109.2
O8—B5—O9115.84 (14)H5A—C5—H5B107.9
O6—B5—O9120.38 (14)C4—C6—C5110.93 (18)
B1—O1—H1A109.5C4—C6—N1111.82 (15)
B2—O2—B1119.89 (13)C5—C6—N1109.11 (15)
B2—O3—H3A109.5C4—C6—H6A108.3
B2—O4—B3123.53 (13)C5—C6—H6A108.3
B1—O5—B3123.25 (13)N1—C6—H6A108.3
B5—O6—B3124.60 (12)N1—C7—H7A109.5
B4—O7—B3123.84 (12)N1—C7—H7B109.5
B5—O8—H8A109.5H7A—C7—H7B109.5
B4—O9—B5119.28 (12)N1—C7—H7D109.5
B4—O10—H10A109.5H7A—C7—H7D109.5
C1—C2—C4112.3 (2)H7B—C7—H7D109.5
C1—C2—H2A109.1N1—C8—H8B109.5
C4—C2—H2A109.1N1—C8—H8E109.5
C1—C2—H2B109.1H8B—C8—H8E109.5
C4—C2—H2B109.1N1—C8—H8C109.5
H2A—C2—H2B107.9H8B—C8—H8C109.5
C3—C1—C2110.5 (2)H8E—C8—H8C109.5
C3—C1—H1B109.6C7—N1—C8108.9 (2)
C2—C1—H1B109.6C7—N1—C6114.16 (19)
C3—C1—H1C109.6C8—N1—C6112.63 (16)
C2—C1—H1C109.6C7—N1—H1D106.9
H1B—C1—H1C108.1C8—N1—H1D106.9
C6—C4—C2110.61 (18)C6—N1—H1D106.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.821.962.7759 (16)174.
O3—H3A···O4ii0.821.992.8143 (16)178.
O8—H8A···O6iii0.821.962.7816 (15)179.
O10—H10A···O9iv0.822.032.8477 (15)178.
N1—H1D···O70.911.942.8368 (18)169.

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+2, −z+2; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2056).

References

  • Batsanov, A. S., Nava, E. H., Struchkov, T. & Akimov, V. M. (1982). Cryst. Struct. Commun.11, 1629–1631.
  • Bruker (2002). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral.33, 1131–1151.
  • Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324.
  • Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral.37, 731–761.
  • Liu, Z. H. & Li, L. Q. (2006). Cryst. Growth Des.6, 1247–1249.
  • Liu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem.45, 1430-1432. [PubMed]
  • Schubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem.39, 2250–2251. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci.5, 1327–1342.
  • Wang, G. M., Li, J. H., Huang, H. L., Li, H. & Zhang, J. (2008a). Inorg. Chem.47, 5039–5041. [PubMed]
  • Wang, G. M., Li, J. H., Li, Z. X., Huang, H. L., Xue, S. Y. & Liu, H. L. (2008b). Inorg. Chem.47, 1270–1272. [PubMed]
  • Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2004). J. Solid State Chem.177, 4648–4654.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography