PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1967.
Published online 2008 September 20. doi:  10.1107/S1600536808029565
PMCID: PMC2959340

Hydroxonium 1-ammonio­ethyl­idene-1,1-bis­phospho­nate

Abstract

The title compound, H3O+·C2H8NO6P2 , contains a disordered H3O+ cation and an NH3C(CH3)(PO3H)2 anion. The three H atoms of the H3O+ cation are statistically distributed over four positions with occupancies of 0.75, resulting in a pseudo tetra­hedron. Multiple N—H(...)O and O—H(...)O hydrogen bonds generate an intricate three-dimensional network.

Related literature

For related literature, see: Bollinger & Roundhill (1993 [triangle]); Chai et al. (1980 [triangle]); Clearfield (2002 [triangle]); Fernández et al. (2003 [triangle]); Li et al. (2008 [triangle]); Finn et al. (2003 [triangle]); Yin et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1967-scheme1.jpg

Experimental

Crystal data

  • H3O+·C2H8NO6P2
  • M r = 223.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1967-efi1.jpg
  • a = 5.6379 (5) Å
  • b = 8.9712 (8) Å
  • c = 9.2302 (8) Å
  • α = 102.111 (1)°
  • β = 100.499 (1)°
  • γ = 101.342 (1)°
  • V = 435.22 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 293 (2) K
  • 0.36 × 0.32 × 0.27 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.839, T max = 0.876
  • 2811 measured reflections
  • 1946 independent reflections
  • 1871 reflections with I > 2σ(I)
  • R int = 0.009

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.095
  • S = 1.08
  • 1946 reflections
  • 113 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029565/pv2098sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029565/pv2098Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Education Department of Hunan Province (0806D094)

supplementary crystallographic information

Comment

Phosphonic acids are interesting ligands. They can complex various metal ions and a series of organic-inorganic hydrid materials containing phosphonic acids have been prepared and characterized. Such materials have potential applications in catalysts, sensors, sorbents, magnetic and luminescent materials (Finn et al., 2003). In addition, introduction of some functional groups to phosphonic acids, such as crown ether, –COOH, –OH, –NR2 or mixed group will modify their complexing ability (Clearfield, 2002). 1-Aminoethylidene-1,1-diphosphonic acid (AEDPH4) exists as a zwitterion and is inclined to transfer one proton to the amino group (Bollinger & Roundhill, 1993; Fernández et al., 2003; Li et al., 2008 ). Its deprotonation would result in predictable hydrogen aggregates from stronger P—O—H···O—P to weaker C—H···O hydrogen bonds. However, its crystal structure is still unknown (Yin et al., 2005). Herein, we report the structure of the title compound, (I).

The asymetric unit of (I) is built up from one deprotonated AEDPH4 anion and a disordered H3O+ cation which are linked through OW—H···O hydrogen bonds (Fig. 1, Table 1). Two of the four protons of phosphonates are used in the protonation of one for the amino group, the other for H3O+ cation. The deprotonated AEDPH3- anions form two-dimensional (2D) H-bonded layer along the bc-plane. The strongest H-bond is O1—H1···O3iii (with O1···O3 distance 2.501 (2)Å), which links the AEDPH3- anions into dimers which form an infinite chain along the b axis by hydrogen bond O4—H4···O2iv (O4···O2 distance 2.635 (2) Å). Furthermore, three N-H···O H-bonds connect these chains to obtain a 2D layer. The H3O+ anions bond to the adjacent layers with five Ow—H···O bonds and stabilize the structure. The occurence of different hydrogen bond interactions, N—H···O, O—H···O and OW—H···O results in the formation of an intricated three dimensional network (Fig. 2, Table 1).

Experimental

The title compound was synthesized according to the US Patent 4239695 (Chai et al., 1980). It was crystallized unexpectedly when 4,4'-bipyridine was adding into the AEDPH4 H2O solution to synthesize the complex. However, the 4,4'-bipyridine was not present in the final product.

Refinement

All H atoms attached to C atoms, N atom and O(hydroxyl) atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (C), N—H = 0.86 Å and O—H= 0.82Å with Uiso(H) = 1.5Ueq(C,N or O). H atoms of the H3O+ cation were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H = 0.86 (1)Å) with Uiso(H) = 1.5Ueq(O); in the final stages of refinement their coordinates were fixed. The three hydrogen atoms of the H3O+ cation are statistically distributed over four positions with occupation factor of 0.75, resulting in a pseudo tetrahedron.

Figures

Fig. 1.
The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
Fig. 2.
Partial packing view of compound ( I ), showing the formation of the three dimensional network built from hydrogen bonds. For clarity, H atoms not involved in hydrogen bonding have been omitted. [symmetry codes: (i) 1+x, y, z; (ii) 2-x , 2-y, z ; (iii) ...

Crystal data

H3O+·C2H8NO6P2Z = 2
Mr = 223.06F(000) = 232
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6379 (5) ÅCell parameters from 2523 reflections
b = 8.9712 (8) Åθ = 2.4–29.6°
c = 9.2302 (8) ŵ = 0.50 mm1
α = 102.111 (1)°T = 293 K
β = 100.499 (1)°Plate, colorless
γ = 101.342 (1)°0.36 × 0.32 × 0.27 mm
V = 435.22 (7) Å3

Data collection

Bruker SMART 4K CCD area-detector diffractometer1871 reflections with I > 2σ(I)
graphiteRint = 0.009
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.839, Tmax = 0.876k = −9→11
2811 measured reflectionsl = −11→8
1946 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0451P)2 + 0.5124P] where P = (Fo2 + 2Fc2)/3
1946 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
P10.64618 (8)0.73089 (5)0.49332 (5)0.01519 (14)
P20.58222 (8)0.83546 (6)0.19085 (5)0.01897 (14)
C10.7352 (3)0.7236 (2)0.3101 (2)0.0159 (3)
C20.6859 (4)0.5520 (2)0.2183 (2)0.0263 (4)
H2A0.74480.54930.12680.039*
H2B0.51060.50460.19240.039*
H2C0.77170.49500.27840.039*
N11.0110 (3)0.79403 (19)0.34632 (18)0.0177 (3)
H1A1.08840.75000.41260.027*
H1B1.04210.89710.38660.027*
H1C1.06570.77660.26120.027*
O10.8136 (2)0.63586 (16)0.57120 (16)0.0207 (3)
H10.73710.54350.55130.031*
O20.7185 (3)0.89740 (16)0.58704 (16)0.0234 (3)
O30.3743 (2)0.64928 (16)0.46080 (17)0.0218 (3)
O40.6364 (3)1.00594 (17)0.29828 (18)0.0267 (3)
H40.51231.01750.32950.040*
O50.7259 (3)0.8501 (2)0.07158 (17)0.0295 (3)
O60.3106 (3)0.75734 (19)0.14090 (16)0.0262 (3)
O1W1.0469 (3)0.8192 (2)−0.1160 (2)0.0403 (4)
H91.00020.7549−0.20880.061*0.75
H100.92200.8286−0.07180.061*0.75
H111.14340.7837−0.05150.061*0.75
H121.11570.9206−0.10250.061*0.75

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0131 (2)0.0149 (2)0.0193 (2)0.00319 (17)0.00587 (17)0.00642 (17)
P20.0151 (2)0.0268 (3)0.0203 (3)0.00901 (19)0.00713 (18)0.01124 (19)
C10.0124 (7)0.0172 (8)0.0194 (8)0.0038 (6)0.0051 (6)0.0057 (6)
C20.0297 (10)0.0204 (9)0.0257 (10)0.0056 (8)0.0055 (8)0.0005 (7)
N10.0128 (7)0.0209 (7)0.0223 (8)0.0054 (6)0.0068 (6)0.0083 (6)
O10.0173 (6)0.0195 (6)0.0253 (7)0.0040 (5)0.0017 (5)0.0094 (5)
O20.0265 (7)0.0170 (7)0.0275 (7)0.0043 (5)0.0119 (6)0.0033 (5)
O30.0132 (6)0.0226 (7)0.0334 (8)0.0043 (5)0.0073 (5)0.0138 (6)
O40.0239 (7)0.0241 (7)0.0376 (8)0.0104 (6)0.0125 (6)0.0106 (6)
O50.0297 (8)0.0425 (9)0.0283 (8)0.0162 (7)0.0175 (6)0.0184 (7)
O60.0162 (7)0.0401 (8)0.0239 (7)0.0087 (6)0.0033 (5)0.0112 (6)
O1W0.0390 (9)0.0496 (11)0.0344 (9)0.0119 (8)0.0101 (7)0.0127 (8)

Geometric parameters (Å, °)

P1—O21.4952 (14)C2—H2B0.9600
P1—O31.5081 (13)C2—H2C0.9600
P1—O11.5686 (14)N1—H1A0.8900
P1—C11.8417 (18)N1—H1B0.8900
P2—O51.4928 (14)N1—H1C0.8900
P2—O61.4947 (14)O1—H10.8200
P2—O41.5765 (15)O4—H40.8200
P2—C11.8497 (19)O1W—H90.8869
C1—N11.505 (2)O1W—H100.8852
C1—C21.537 (2)O1W—H110.8841
C2—H2A0.9600O1W—H120.8888
O2—P1—O3115.72 (8)C1—C2—H2B109.5
O2—P1—O1108.61 (8)H2A—C2—H2B109.5
O3—P1—O1111.06 (8)C1—C2—H2C109.5
O2—P1—C1109.30 (8)H2A—C2—H2C109.5
O3—P1—C1108.25 (8)H2B—C2—H2C109.5
O1—P1—C1103.15 (8)C1—N1—H1A109.5
O5—P2—O6118.42 (9)C1—N1—H1B109.5
O5—P2—O4106.13 (9)H1A—N1—H1B109.5
O6—P2—O4112.40 (8)C1—N1—H1C109.5
O5—P2—C1105.96 (8)H1A—N1—H1C109.5
O6—P2—C1108.21 (8)H1B—N1—H1C109.5
O4—P2—C1104.72 (8)P1—O1—H1109.5
N1—C1—C2107.76 (14)P2—O4—H4109.5
N1—C1—P1106.97 (11)H9—O1W—H10113.6
C2—C1—P1110.19 (13)H9—O1W—H11112.2
N1—C1—P2107.45 (12)H10—O1W—H11102.3
C2—C1—P2109.40 (13)H9—O1W—H12120.3
P1—C1—P2114.79 (9)H10—O1W—H1298.6
C1—C2—H2A109.5H11—O1W—H12107.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.022.798 (2)145
N1—H1B···O2ii0.892.002.766 (2)144
N1—H1C···O6i0.891.932.771 (2)156
O1—H1···O3iii0.821.692.501 (2)168
O4—H4···O2iv0.821.842.635 (2)164
O1W—H9···O1v0.892.062.923 (2)164
O1W—H10···O50.891.882.737 (2)164
O1W—H11···O6i0.881.942.781 (2)159
O1W—H12···O5vi0.892.012.901 (3)180

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+1; (v) x, y, z−1; (vi) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2098).

References

  • Bollinger, J. E. & Roundhill, D. M. (1993). Inorg. Chem.32, 2821–2826.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent 4 239 695.
  • Clearfield, A. (2002). Curr. Opin. Solid Mater. Sci 6, 495–506.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289–o292. [PubMed]
  • Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem.51, 421–601.
  • Li, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem.61, 372–383.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem.178, 1049–1053.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography