PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1884.
Published online 2008 September 6. doi:  10.1107/S1600536808027827
PMCID: PMC2959338

5-(2-Bromo­phen­yl)-1,3,4-thia­diazol-2-amine

Abstract

In the title compound, C8H6BrN3S, the thia­diazole ring is oriented at a dihedral angle of 48.35 (3)° with respect to the bromo­phenyl ring. In the crystal structure, inter­molecular N—H(...)N hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Nakagawa et al. (1996 [triangle]); Omar et al. (1986 [triangle]); Wang et al. (1999 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1884-scheme1.jpg

Experimental

Crystal data

  • C8H6BrN3S
  • M r = 256.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1884-efi1.jpg
  • a = 14.869 (3) Å
  • b = 8.0250 (16) Å
  • c = 7.9480 (16) Å
  • β = 97.43 (3)°
  • V = 940.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.54 mm−1
  • T = 298 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.343, T max = 0.659
  • 1832 measured reflections
  • 1694 independent reflections
  • 972 reflections with I > 2σ(I)
  • R int = 0.034
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.153
  • S = 0.97
  • 1694 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027827/hk2522sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027827/hk2522Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). It can also be widely used in the field of medicine, such as anti-cancer drugs (Omar et al., 1986).

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1–C6) and B (S/N1/N2/C7/C8) are, of course, planar, and they are oriented at a dihedral angle of 48.35 (3)°.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 2-bromobenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give title compound (m.p. 486–487 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H6BrN3SF(000) = 504
Mr = 256.13Dx = 1.809 Mg m3
Monoclinic, P21/cMelting point = 486–487 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.869 (3) ÅCell parameters from 25 reflections
b = 8.0250 (16) Åθ = 10–14°
c = 7.9480 (16) ŵ = 4.55 mm1
β = 97.43 (3)°T = 298 K
V = 940.4 (3) Å3Block, colorless
Z = 40.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = −17→17
Absorption correction: ψ scan (North et al., 1968)k = 0→9
Tmin = 0.343, Tmax = 0.659l = 0→9
1832 measured reflections3 standard reflections every 120 min
1694 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0838P)2] where P = (Fo2 + 2Fc2)/3
1694 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.88329 (5)1.09232 (10)1.09121 (14)0.0845 (5)
S0.65602 (11)1.1146 (2)1.0932 (2)0.0458 (5)
N10.6259 (3)0.9573 (7)0.8134 (6)0.0424 (13)
N20.5587 (3)1.0773 (6)0.8048 (6)0.0430 (13)
N30.5081 (3)1.2909 (6)0.9666 (6)0.0480 (14)
H3A0.46351.31430.89010.058*
H3B0.51581.34671.05970.058*
C10.7308 (5)0.6693 (8)0.9656 (9)0.0512 (18)
H10.67220.64310.91760.061*
C20.7921 (5)0.5423 (8)1.0064 (10)0.0591 (19)
H20.77500.43190.98660.071*
C30.8787 (5)0.5816 (10)1.0769 (10)0.068 (2)
H30.92040.49681.10670.081*
C40.9041 (4)0.7438 (10)1.1036 (9)0.059 (2)
H40.96300.76981.15060.071*
C50.8416 (4)0.8692 (8)1.0602 (9)0.0493 (17)
C60.7542 (4)0.8348 (7)0.9941 (8)0.0378 (14)
C70.6811 (4)0.9618 (8)0.9507 (7)0.0363 (14)
C80.5647 (4)1.1688 (7)0.9412 (7)0.0332 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0417 (5)0.0576 (5)0.1483 (10)−0.0105 (4)−0.0096 (5)−0.0066 (6)
S0.0396 (9)0.0538 (10)0.0394 (9)0.0102 (8)−0.0131 (7)−0.0097 (8)
N10.042 (3)0.046 (3)0.037 (3)0.000 (3)−0.001 (3)−0.003 (3)
N20.045 (3)0.043 (3)0.037 (3)0.008 (3)−0.008 (2)−0.005 (3)
N30.049 (3)0.056 (4)0.036 (3)0.015 (3)−0.008 (2)−0.007 (3)
C10.046 (4)0.049 (4)0.057 (5)−0.003 (3)0.005 (3)0.001 (4)
C20.057 (4)0.035 (4)0.086 (5)0.004 (3)0.013 (4)0.004 (4)
C30.050 (4)0.068 (6)0.083 (6)0.021 (4)0.005 (4)0.012 (5)
C40.037 (4)0.064 (5)0.073 (5)0.009 (4)−0.003 (4)0.009 (4)
C50.031 (3)0.049 (4)0.065 (4)−0.004 (3)−0.004 (3)0.006 (3)
C60.038 (3)0.040 (3)0.036 (3)−0.002 (3)0.006 (3)−0.004 (3)
C70.029 (3)0.042 (3)0.037 (3)−0.006 (3)0.001 (3)0.001 (3)
C80.029 (3)0.035 (3)0.034 (4)0.000 (3)−0.003 (3)0.004 (3)

Geometric parameters (Å, °)

Br—C51.901 (7)C3—H30.9300
N1—N21.383 (7)C4—C51.383 (9)
N3—H3A0.8600C4—H40.9300
N3—H3B0.8600C5—C61.365 (8)
C1—C21.377 (9)C6—C71.498 (8)
C1—C61.384 (8)C7—N11.278 (7)
C1—H10.9300C7—S1.742 (6)
C2—C31.373 (10)C8—N21.302 (7)
C2—H20.9300C8—N31.325 (7)
C3—C41.365 (11)C8—S1.752 (6)
C2—C1—C6121.8 (7)C5—C6—C1117.6 (6)
C2—C1—H1119.1C5—C6—C7125.3 (6)
C6—C1—H1119.1C1—C6—C7117.1 (6)
C3—C2—C1118.9 (7)N1—C7—C6123.0 (6)
C3—C2—H2120.5N1—C7—S114.0 (5)
C1—C2—H2120.5C6—C7—S122.6 (4)
C4—C3—C2120.6 (7)N2—C8—N3124.6 (5)
C4—C3—H3119.7N2—C8—S113.4 (4)
C2—C3—H3119.7N3—C8—S122.0 (5)
C3—C4—C5119.4 (6)C7—N1—N2113.7 (5)
C3—C4—H4120.3C8—N2—N1112.4 (5)
C5—C4—H4120.3C8—N3—H3A120.0
C6—C5—C4121.6 (6)C8—N3—H3B120.0
C6—C5—Br121.2 (5)H3A—N3—H3B120.0
C4—C5—Br117.1 (5)C7—S—C886.4 (3)
C6—C1—C2—C3−0.2 (11)C1—C6—C7—N1−44.3 (9)
C1—C2—C3—C4−1.0 (12)C5—C6—C7—S−51.2 (8)
C2—C3—C4—C50.5 (12)C1—C6—C7—S128.4 (6)
C3—C4—C5—C61.3 (11)C6—C7—N1—N2174.6 (5)
C3—C4—C5—Br−177.2 (6)S—C7—N1—N21.3 (7)
C4—C5—C6—C1−2.5 (11)N3—C8—N2—N1−179.0 (6)
Br—C5—C6—C1176.0 (5)S—C8—N2—N10.6 (6)
C4—C5—C6—C7177.2 (6)C7—N1—N2—C8−1.2 (7)
Br—C5—C6—C7−4.4 (9)N1—C7—S—C8−0.8 (5)
C2—C1—C6—C51.9 (11)C6—C7—S—C8−174.1 (5)
C2—C1—C6—C7−177.8 (6)N2—C8—S—C70.1 (5)
C5—C6—C7—N1136.1 (7)N3—C8—S—C7179.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.273.092 (7)160.
N3—H3A···N2i0.862.613.221 (7)129.
N3—H3B···N2ii0.862.062.896 (7)163.

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+5/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2522).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Omar, A. & Aboulwafa, O. M. (1986). J. Heterocycl. Chem 23, 1339–1341.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ 20, 1903–1905.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography