PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1222.
Published online 2008 September 6. doi:  10.1107/S1600536808027530
PMCID: PMC2959337

Bis[4-(dimethyl­amino)pyridinium] tetra­bromidodiphenyl­plumbate(IV)

Abstract

The PbIV atom of the anion of the title salt, (C7H11N2)2[PbBr4(C6H5)2], is situated on a crystallographic center of inversion and exhibits a tetra­gonally compressed octa­hedral coordination. One of the two independent Br atoms acts as a hydrogen-bond acceptor towards the NH group of the cation.

Related literature

For the structure of isostructural bis­(4-dimethyl­amino­pyridinium) tetra­bromidodiphenyl­stannate, see: Yap et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1222-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)2[PbBr4(C6H5)2]
  • M r = 927.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1222-efi1.jpg
  • a = 9.4994 (8) Å
  • b = 13.882 (1) Å
  • c = 10.991 (1) Å
  • β = 92.998 (1)°
  • V = 1447.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.37 mm−1
  • T = 100 (2) K
  • 0.22 × 0.08 × 0.06 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.246, T max = 0.549 (expected range = 0.226–0.505)
  • 8227 measured reflections
  • 3309 independent reflections
  • 2879 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.074
  • S = 1.03
  • 3309 reflections
  • 162 parameters
  • H-atom parameters constrained
  • Δρmax = 1.21 e Å−3
  • Δρmin = −1.70 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027530/im2080sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027530/im2080Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

In an earlier study, the tin-alkyl and one tin-aryl bond of an alkyltriphenyltin compound could be cleaved by 4-dimethylaminopyridine hydrobromide perbromide to form bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate (Yap et al., 2008). In the present study, the organic reagent similarly cleaves two lead-carbon bonds to afford the corresponding plumbate (Scheme I, Fig. 1). The two compounds are isostructural.

Experimental

Tetraphenyllead (1.55 g, 3 mmol) and 4-dimethylaminopyridinium hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for 3 h. The filtered solution when allowed to evaporate yielded large colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was similarly constrained (N–H 0.88 Å).

The difference Fourier map had large peaks/deep holes near the lead atom.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) plot of (C7H11N)2 [PbBr4(C6H5)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C7H11N2)2[PbBr4(C6H5)2]F(000) = 876
Mr = 927.39Dx = 2.128 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3449 reflections
a = 9.4994 (8) Åθ = 2.3–28.3°
b = 13.882 (1) ŵ = 11.37 mm1
c = 10.991 (1) ÅT = 100 K
β = 92.998 (1)°Prism, colorless
V = 1447.3 (2) Å30.22 × 0.08 × 0.06 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer3309 independent reflections
Radiation source: fine-focus sealed tube2879 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.246, Tmax = 0.549k = −17→18
8227 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0374P)2 + 3.9748P] where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = −1.70 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.50000.50000.50000.00948 (8)
Br10.55832 (5)0.61261 (3)0.29156 (5)0.01773 (12)
Br20.76243 (5)0.40245 (3)0.46044 (4)0.01405 (11)
N11.1998 (4)0.5912 (3)−0.0112 (4)0.0149 (8)
N20.8888 (4)0.5868 (3)0.2341 (4)0.0195 (9)
H2n0.81880.58190.28310.023*
C10.6145 (5)0.6028 (3)0.6196 (4)0.0122 (9)
C20.5516 (5)0.6319 (3)0.7245 (4)0.0138 (9)
H20.46240.60710.74430.017*
C30.6230 (5)0.6988 (3)0.8006 (4)0.0171 (10)
H30.58210.72020.87280.021*
C40.7539 (5)0.7339 (3)0.7703 (4)0.0163 (10)
H40.80190.77950.82190.020*
C50.8145 (5)0.7028 (3)0.6654 (4)0.0161 (10)
H50.90410.72690.64550.019*
C60.7450 (5)0.6367 (3)0.5894 (4)0.0136 (9)
H60.78640.61500.51750.016*
C70.8774 (5)0.6473 (4)0.1383 (5)0.0209 (11)
H70.79610.68690.12760.025*
C80.9792 (5)0.6529 (3)0.0567 (5)0.0162 (10)
H80.96910.6961−0.01020.019*
C91.1018 (5)0.5936 (3)0.0715 (4)0.0115 (9)
C101.1123 (5)0.5358 (4)0.1782 (4)0.0164 (10)
H101.19450.49810.19520.020*
C111.0064 (5)0.5337 (4)0.2559 (5)0.0189 (10)
H111.01500.49440.32660.023*
C121.1934 (6)0.6536 (4)−0.1184 (5)0.0235 (12)
H12A1.09490.6696−0.14050.035*
H12B1.23460.6201−0.18650.035*
H12C1.24630.7129−0.10010.035*
C131.3293 (5)0.5345 (4)0.0087 (5)0.0195 (10)
H13A1.39390.56820.06670.029*
H13B1.37440.5264−0.06880.029*
H13C1.30610.47120.04160.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.01089 (12)0.01025 (12)0.00716 (12)−0.00156 (9)−0.00091 (8)−0.00108 (9)
Br10.0182 (2)0.0185 (2)0.0164 (2)0.00011 (18)0.00039 (19)0.00211 (19)
Br20.0142 (2)0.0158 (2)0.0120 (2)0.00186 (17)−0.00032 (18)−0.00038 (17)
N10.018 (2)0.0146 (19)0.012 (2)0.0033 (16)0.0018 (17)0.0019 (16)
N20.018 (2)0.025 (2)0.016 (2)−0.0001 (18)0.0063 (18)−0.0024 (18)
C10.014 (2)0.011 (2)0.011 (2)−0.0021 (17)−0.0035 (18)0.0002 (17)
C20.015 (2)0.013 (2)0.014 (2)0.0022 (18)0.0000 (19)0.0002 (18)
C30.022 (2)0.018 (2)0.011 (2)0.003 (2)−0.003 (2)−0.0025 (19)
C40.023 (3)0.009 (2)0.016 (3)−0.0022 (19)−0.008 (2)−0.0004 (18)
C50.016 (2)0.016 (2)0.016 (2)−0.0037 (19)−0.004 (2)0.0035 (19)
C60.020 (2)0.015 (2)0.005 (2)−0.0030 (19)−0.0028 (18)0.0005 (18)
C70.016 (2)0.021 (3)0.025 (3)0.006 (2)−0.005 (2)−0.005 (2)
C80.019 (2)0.016 (2)0.013 (2)0.0049 (19)−0.002 (2)0.0004 (19)
C90.013 (2)0.011 (2)0.011 (2)−0.0004 (17)−0.0021 (18)−0.0026 (17)
C100.018 (2)0.019 (2)0.012 (2)−0.001 (2)−0.003 (2)0.000 (2)
C110.019 (2)0.023 (2)0.015 (3)−0.001 (2)−0.001 (2)−0.001 (2)
C120.030 (3)0.023 (3)0.018 (3)0.004 (2)0.003 (2)0.008 (2)
C130.013 (2)0.027 (3)0.018 (3)0.005 (2)0.000 (2)−0.003 (2)

Geometric parameters (Å, °)

Pb1—C12.190 (5)C4—H40.9500
Pb1—C1i2.190 (5)C5—C61.385 (6)
Pb1—Br12.8516 (5)C5—H50.9500
Pb1—Br1i2.8516 (5)C6—H60.9500
Pb1—Br2i2.8897 (5)C7—C81.356 (7)
Pb1—Br22.8897 (5)C7—H70.9500
N1—C91.335 (6)C8—C91.428 (6)
N1—C131.467 (6)C8—H80.9500
N1—C121.461 (6)C9—C101.420 (7)
N2—C71.347 (7)C10—C111.353 (7)
N2—C111.349 (7)C10—H100.9500
N2—H2n0.8800C11—H110.9500
C1—C61.383 (6)C12—H12A0.9800
C1—C21.386 (6)C12—H12B0.9800
C2—C31.401 (7)C12—H12C0.9800
C2—H20.9500C13—H13A0.9800
C3—C41.392 (7)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.384 (7)
C1—Pb1—C1i180.00 (17)C6—C5—C4120.2 (4)
C1—Pb1—Br190.79 (12)C6—C5—H5119.9
C1i—Pb1—Br189.21 (12)C4—C5—H5119.9
C1—Pb1—Br1i89.21 (12)C1—C6—C5119.1 (4)
C1i—Pb1—Br1i90.79 (12)C1—C6—H6120.4
Br1—Pb1—Br1i180.000 (16)C5—C6—H6120.4
C1—Pb1—Br2i90.55 (12)C8—C7—N2121.5 (5)
C1i—Pb1—Br2i89.45 (12)C8—C7—H7119.3
Br1—Pb1—Br2i93.978 (14)N2—C7—H7119.3
Br1i—Pb1—Br2i86.022 (14)C7—C8—C9119.8 (5)
C1—Pb1—Br289.45 (12)C7—C8—H8120.1
C1i—Pb1—Br290.55 (12)C9—C8—H8120.1
Br1—Pb1—Br286.022 (14)N1—C9—C10121.8 (4)
Br1i—Pb1—Br293.978 (14)N1—C9—C8122.0 (4)
Br2i—Pb1—Br2180.0C10—C9—C8116.2 (4)
C9—N1—C13121.4 (4)C11—C10—C9120.7 (5)
C9—N1—C12122.2 (4)C11—C10—H10119.7
C13—N1—C12115.9 (4)C9—C10—H10119.7
C7—N2—C11120.7 (4)C10—C11—N2120.8 (5)
C7—N2—H2n119.6C10—C11—H11119.6
C11—N2—H2n119.6N2—C11—H11119.6
C6—C1—C2122.1 (4)N1—C12—H12A109.5
C6—C1—Pb1120.1 (3)N1—C12—H12B109.5
C2—C1—Pb1117.8 (3)H12A—C12—H12B109.5
C1—C2—C3118.2 (4)N1—C12—H12C109.5
C1—C2—H2120.9H12A—C12—H12C109.5
C3—C2—H2120.9H12B—C12—H12C109.5
C4—C3—C2120.0 (4)N1—C13—H13A109.5
C4—C3—H3120.0N1—C13—H13B109.5
C2—C3—H3120.0H13A—C13—H13B109.5
C5—C4—C3120.4 (4)N1—C13—H13C109.5
C5—C4—H4119.8H13A—C13—H13C109.5
C3—C4—H4119.8H13B—C13—H13C109.5
Br1—Pb1—C1—C6−46.0 (4)Pb1—C1—C6—C5179.0 (3)
Br1i—Pb1—C1—C6134.0 (4)C4—C5—C6—C10.2 (7)
Br2i—Pb1—C1—C6−140.0 (4)C11—N2—C7—C83.9 (8)
Br2—Pb1—C1—C640.0 (4)N2—C7—C8—C90.1 (8)
Br1—Pb1—C1—C2133.8 (3)C13—N1—C9—C10−5.1 (7)
Br1i—Pb1—C1—C2−46.2 (3)C12—N1—C9—C10−177.1 (5)
Br2i—Pb1—C1—C239.9 (3)C13—N1—C9—C8176.2 (4)
Br2—Pb1—C1—C2−140.1 (3)C12—N1—C9—C84.2 (7)
C6—C1—C2—C30.9 (7)C7—C8—C9—N1174.8 (5)
Pb1—C1—C2—C3−179.0 (3)C7—C8—C9—C10−3.9 (7)
C1—C2—C3—C4−0.3 (7)N1—C9—C10—C11−174.7 (5)
C2—C3—C4—C5−0.2 (7)C8—C9—C10—C114.0 (7)
C3—C4—C5—C60.3 (7)C9—C10—C11—N2−0.3 (8)
C2—C1—C6—C5−0.8 (7)C7—N2—C11—C10−3.8 (8)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2n···Br10.882.523.254 (4)142

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2080).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.
  • Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography